J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth 21.05.2015

Model Checking – Exercise sheet 5.1

Exercise 5.1: Special cases for F and G

- 1. Is $\mathbf{F} \neg p$ in negative normal form ? What about $\mathbf{G}\varphi$?
- 2. Assume φ is in negative normal form, give the negative normal form of $\mathbf{G}\neg\varphi$
- 3. Extend the set of rules of the LTL to Büchi translation so as to deal with **F** and **G** operators.
- 4. Prove that when building an automaton for a formula φ of the form $\mathbf{G}\psi$, it is not necessary to build states not containing φ .

Exercise 5.2: LTL to Büchi translation

We consider the following LTL formula: $\varphi = \mathbf{G}((X(p \ \mathcal{U} \ q)) \rightarrow ((\neg p \land \mathbf{F}q) \lor (q \ \mathcal{U} \ \mathbf{X}q)))$

- 1. Give the subformulas of φ
- 2. How many (consistent) states does the LTL to Büchi translation of φ have ?

 $\{p\},\$

- 3. How many of sets of accepting states are there ?
- 4. Is $\{\varphi\}$ an accepting state of the LTL to Büchi translation?
- 5. Give a reachable state that admits not successor
- 6. Give a successor state of $\{\varphi, p, q, q \ \mathcal{U} \ \mathbf{X}q, \mathbf{F}q\}$
- 7. Give a predecessor of $\{\varphi, q, q \ \mathcal{U} \ \mathbf{X}q, \mathbf{F}q\}$

Exercise 5.3: From Büchi to LTL

We give the following automaton
$$\mathcal{B}$$
:

$$2^{AP} \quad \{p,q\} \quad \{p,q\} \quad \{q\} \quad \{q\}$$

- 1. Propose an LTL formula describing the language of \mathcal{B}
- 2. How to build a Büchi automaton that accepts the complement of $L_{\mathcal{B}}$?
- 3. Build the Büchi automaton for the formula $\mathbf{G}(\neg p \lor (\neg p \mathcal{R}(p \lor \neg q)))$
- 4. Deduce an automaton accepting the complement of the language of \mathcal{B}