Technische Universität München

Summer Semester 2015

$\mathbf{I7}$

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth

 $\models \varphi \models \psi$

 $\models \varphi \models \psi$

 $\not\models \varphi \models \psi$

Model Checking – Exercise sheet 4

Exercise 4.1: Solution

- $\varphi = \mathbf{G} \neg q \lor \mathbf{F}(q \land (\neg p \ \mathbf{W} s)) \text{ and } \psi = \mathbf{G}((q \land \neg r \land \mathbf{F} r) \rightarrow ((p \rightarrow (\neg r \ \mathcal{U}(s \land \neg r))) \ \mathcal{U} r))$
- 1. $\{p,q\}\{p,q,r,s\}\{s\}\{p,q,r\}\{q,r,s\}\{p,q\}\{p\}\{\}\{p,q\}^{\omega}$
- 2. $\{p,q\}\{p,q,s\}\{s\}\{p,q,r\}\{q,r,s\}\{p,q\}\{p\}\{\}\{p,q\}^{\omega}$
- 3. $\{p,q\}\{q\}\{p,q,s\}\{p,q,s\}\{p,s\}\{q,r,s\}\{q,r,s\}\{q,r,s\}\{q,r,s\}^{\omega} \models \varphi \models \psi$
- 4. $\{p,q\}\{p,q,s\}\{p,r,s\}\{q,s\}\{p,s\}\{r,s\}\{r\}^{\omega}$ $\models \varphi \models \psi$
- 5. $(\{p\}\{s\}\{r\}\{q\})^{\omega}$

Exercise 4.2: Solution

- (a) (1) by definition of **G**, $w \models \mathbf{G}\varphi$ iff $\forall n \ w^n \models \varphi$, fixing n = 0 yields $w \models \varphi$. Thus $w \models \mathbf{G}\varphi \implies w \models \varphi$ (2) by definition of **F**, $w \models \mathbf{F}\varphi$ iff $\exists n \ w^n \models \varphi$. If $w \models \varphi$, then $w^0 \models \varphi$, hence $w \models \mathbf{F}\varphi$.
- (b) (3) by (1), since $\mathbf{G}\psi \implies \psi$. (typically when $\psi = \mathbf{F}\varphi$) (5) by (2), since $\psi \implies \mathbf{F}\psi$. (when $\psi = \mathbf{G}\varphi$).
- (c) Clearly if $w \models \mathbf{F}\varphi$ then $\exists n \ w^n \models \varphi$, thus $w^n \models \varphi$, hence $w \models \mathbf{F}\psi$
- (d) If $\varphi \implies \psi$ then $\neg \psi \implies \neg \varphi$ thus $\mathbf{F} \neg \psi \implies \mathbf{F} \neg \varphi$, so $\neg \mathbf{F} \neg \varphi \implies \neg \mathbf{F} \neg \psi$, which can be rewritten as $\mathbf{G}\varphi \implies \mathbf{G}\psi$.
- (e) We rely on the fact that $\exists i \forall j \xi \implies \forall j \exists i \xi$. More intuitively if we can find an *i* that works for all *j*, then for all *j*, we can find an *i* (and it will even be the same *i* for all *j*). Thus $\exists i \forall j w^{i+j} \models \varphi$ (i.e. $w \models \mathbf{FG}\varphi$) implies $\forall i \exists j w^{j+i} \models \varphi$, (i.e. $w \models \mathbf{GF}\varphi$).
- (f) If $\exists i \exists j w^{i+j} \models \varphi$, then we could have directly existentially quantified the sum: $\exists s w^s \models \varphi$.
- (g) (3) gives us $\mathbf{F}\varphi \implies \mathbf{FF}\varphi$. (f) allows to conclude.
- (h) by taking the negation of (g) over $\neg \varphi$, we obtain $\neg \mathbf{FF} \neg \varphi \equiv \neg \mathbf{F} \neg \varphi$. $\neg \mathbf{FF} \neg \varphi \equiv \mathbf{G} \neg \mathbf{F} \neg \varphi \equiv \mathbf{GG} \neg \neg \varphi \equiv \mathbf{GG} \varphi$.
- (i) (2) gives $\mathbf{GF}\varphi \implies \mathbf{FGF}\varphi$.

by (4) we have $\mathbf{F}\mathbf{G}\psi \implies \mathbf{G}\mathbf{F}\psi$. With $\psi = \mathbf{F}\varphi$, we obtain, $\mathbf{F}\mathbf{G}\mathbf{F}$ varphi $\implies \mathbf{G}\mathbf{F}\mathbf{F}\varphi$. With (9), we conclude that $\mathbf{F}\mathbf{G}\mathbf{F}\varphi \implies \mathbf{G}\mathbf{F}\varphi$.

The other equivalence can be obtained by definition of $\mathbf{G}\varphi = \neg \mathbf{F} \neg \varphi$.

Exercise 4.3: Solution

1. We will show a more general property on **LTL** formulas: For any **LTL** formula φ , there exists 2 formulas $\mathcal{P}(\varphi)$ and $\mathcal{N}(\varphi)$ of **NF-LTL** such that $w \models \varphi \iff w \models \mathcal{P}(\varphi)$ and $w \models \neg \varphi \iff w \models \mathcal{N}(\varphi)$.

We show this property by structural induction over formulas:

- the atomic case is when φ is of the form $p, p \in AP$, clearly $\mathcal{P}(\varphi) = p$ and $\mathcal{N}(\varphi) = \neg p$ are both in **NF-LTL**. The property therefore holds for the atomic case
- if $\varphi = \varphi_1 \wedge \varphi_2$, by induction hypothesis, we have $\mathcal{P}(\varphi_1), \mathcal{P}(\varphi_2), \mathcal{N}(\varphi_1), \mathcal{N}(\varphi_2)$, clearly we can define the two **NF-LTL** formulas $\mathcal{P}(\varphi) = \mathcal{P}(\varphi_1) \wedge \mathcal{P}(\varphi_2)$ and $\mathcal{N}(\varphi) = \mathcal{N}(\varphi_1) \vee \mathcal{N}(\varphi_2)$, which are equivalent to φ and $\neg \varphi$ respectively. Therefore, conjunction preserves the property.
- if $\varphi = \neg \psi$, then by induction we have two **NF-LTL** formulas $\mathcal{P}(\psi)$ and $\mathcal{N}(\psi)$, that are equivalent to ψ and $\neg \psi$. Clearly, it suffices to take $\mathcal{P}(\varphi) = \mathcal{N}(\psi)$ and $\mathcal{N}(\varphi) = \mathcal{P}(\psi)$. Therefore negation preserves the property.
- if $\varphi = \mathbf{X}\psi$, we take $\mathcal{P}(\varphi) = \mathbf{X}\mathcal{P}(\psi)$ and $\mathcal{N}(\varphi) = \mathbf{X}\mathcal{N}(\psi)$. Let us emphasize that $\mathcal{N}(\varphi)$ is indeed equivalent to $\neg \varphi$. Let us show for any word $w, w \models \mathcal{N}(\varphi)$ iff $w \not\models \mathbf{X}\psi$. $w \models \mathcal{N}(\varphi)$ iff $w \models X\mathcal{N}(\psi)$ iff $w^1 \models \mathcal{N}(\psi)$ (By induction hypothesis, we have that for any $u, u \models \mathcal{N}(\psi)$ iff $u \not\models \psi$, typically when $u = w^1$) iff $w^1 \not\models \psi$ iff $w \not\models \mathbf{X}\psi$ iff $w \not\models \varphi$.
- The last case is when $\varphi = \psi_1 \mathcal{U} \psi_2$. $\mathcal{P}(\varphi)$ is easy to define: $\mathcal{P}(\varphi) = \mathcal{P}(\psi) \mathcal{U} \mathcal{P}(\psi_2)$. To define $\mathcal{N}(\varphi)$, we use the following equivalence: $w \models \neg(\psi_1 \mathcal{U} \psi_2) \iff w \models \mathbf{G} \neg \psi_2 \lor (\neg \psi_2 \mathcal{U}(\neg \psi_1 \land \neg \psi_2))$, then we get that $\mathcal{N}(\varphi) = \mathbf{G} \mathcal{N}(\psi_2) \lor (\mathcal{N}(\psi_2) \mathcal{U}(\mathcal{N}(\psi_1) \land \mathcal{N}(\psi_2)))$.
- 2. We define $N_{\varphi}(w)$ inductively over **NF-LTL**_{-G} formulas:
 - If φ is atomic and $w \models \varphi$, then clearly for any word $w' \in \Sigma^{\omega}$, $w(0)w' \models \varphi$. Therefore in this case $N_{\varphi}(w) = 0$.
 - If $\varphi = \psi_1 \wedge \psi_2$, let $w \models \varphi$, then as $w \models \psi_1$ and $w \models \psi_2$, we can write $N_{\varphi}(w) = \max(N_{\psi_1}(w), N_{\psi_2}(w))$. We have then for all $w' \in \Sigma^{\omega}$, $w(0) \dots w(N_{\varphi}(w))w' \models \varphi$.
 - If $\varphi = \psi_1 \vee \psi_2$, let $w \models \varphi$. Then if $w \models \psi_1$, we take $N_{\varphi}(w) = N_{\psi_1}(w)$, and we have that for any $w' \in \Sigma^{\omega}$, $w(0) \dots w(N_{\varphi}(w))w' \models \psi_1$, hence is also validates φ . Otherwise we take $N_{\varphi}(w) = N_{\psi_2}(w)$, in that case we know that $w \models \psi_2$ and for all $w' \in \Sigma^{\omega}$, $w(0) \dots w(N_{\varphi}(w))w' \models \psi_2$ hence it also validates φ .
 - If $\varphi = \mathbf{X}\psi$, let $w \models \varphi$, then $w^1 \models \psi$, hence we take $N_{\varphi}(w) = N_{\psi}(w^1) + 1$.
 - If $\varphi = \psi_1 \ \mathcal{U} \psi_2$, let $w \models \varphi$, then we know that there exists an integer i such that $\forall j < i, w^j \models \psi_1$ and $w^i \models \psi_2$. We take $N_{\varphi}(w) = \max(i + N_{\psi_2}(w^i), \max_{j=0}^i (j + N_{\psi_1}(w^j)))$. We remark, by induction hypothesis that for any w', $\forall j < i, w(j) \dots w(N_{\varphi}(w))w' \models \psi_1$ and $w(i) \dots w(N_{\varphi}(w))w' \models \psi_2$, as for any $j < i, w(j) \dots w(N_{\varphi}(w))w'$ is $w^j(0) \dots w^j(N_{\varphi}(w) - j)w'$ and as $N_{\varphi}(w) - j \ge N_{\psi_1}(w^j)$, we have that $w^j(0) \dots w^j(N_{\varphi}(w) - j)w' \models \psi_1$; also as $N_{\varphi}(w) - i \ge N_{\psi_2}(w^i)$, $w^i(0) \dots w(N_{\varphi}(w))w' \models \psi_2$.

3. By induction we show that for any NF-LTL_{-X} formula, we have

$$w\models\varphi\iff D(w)\models\varphi\iff D(w)^1\models\varphi$$

- The case of atomic formulas is trivial: only the first letter matters. As $w(0) = D(w)(0) = D(w)^{1}(0)$, this property holds for atomic **NF-LTL**_{-X}
- The case of disjunction and conjunctions is trivially true.
- If $\varphi = \mathbf{G}\psi$, let us first show that $w \models \varphi \implies D(w) \models \varphi$. For that we need to show that $\forall i, D(w)^i \models \psi$. If *i* is even, $D(w)^i = D(w^{i/2})$. Since $w \models \varphi, w^{i/2} \models \psi$ hence by induction hypothesis $D(w^{i/2}) \models \psi$ therefore $D(w)^i \models \psi$. If *i* is odd, then $D(w)^i = D(w^{i/2})^1$, since $w \models \varphi, w^{i/2} \models \psi$ hence by induction hypothesis $D(w^{i/2})^1 \models \psi$ therefore $D(w)^i \models \psi$.

Then we remark that $w \models \varphi \implies D(w)^1 \models \varphi$, as $\varphi = \mathbf{G}\psi$.

Finally we need to show that $D(w)^1 \models \mathbf{G}\psi$ implies $w \models \mathbf{G}\psi$. The former is equivalent to $\forall i, D(w)^{1+i} \models \psi$, noticeably it holds for any even value of *i*. Furthermore, if *i* is even, $D(w)^{1+i} = D(w^{i/2})^1$. By induction hypothesis, it implies that for any even value of *i*, $w^{i/2} \models \psi$, therefore $w \models \mathbf{G}\psi$.

• Finally we treat the case where $\varphi = \psi_1 \ \mathcal{U} \ \psi_2$. First we show that $w \models \psi_1 \ \mathcal{U} \ \psi_2 \implies D(w) \models \psi_1 \ \mathcal{U} \ \psi_2$. There is a k s.t. $w^k \models \psi_2$ and $\forall l < k, \ w^l \models \psi_2$, we need to show that $\exists i \ D(w)^i \models \psi_2 \land \forall j < i, \ D(w)^j \models \psi_1$. Let i = 2 * k, by induction hypothesis $D(w)^i \models \psi_2$. Take j < i, either j is even, in which case $D(w)^j = D(w^{j/2})$ and by induction hypothesis (as j/2 < k) $D(w)^j \models \psi_1$, or j is odd, and then $D(w)^j = D(w^{j/2})^1$ and the induction hypothesis (as j/2 < k) also allows us to conclude that $D(w)^j \models \psi_1$.

Then we show that $D(w) \models \psi_1 \mathcal{U} \psi_2 \implies D(w)^1 \models \psi_1 \mathcal{U} \psi_2$. If $D(w) \models \psi_2$, by induction hypothesis $D(w)^1 \models \psi_2$, hence $D(w)^1 \models \psi_1 \mathcal{U} \psi_2$, if $D(w) \not\models \psi_2$, then $\exists i > 1, \ D(w)^i \models \psi_2 \wedge \forall j < i, \ D(w)^j \models \psi_1$, which implies that $\exists i', \ D(w)^{1+i'} \models \psi_2 \wedge \forall j' < i', \ D(w)^{1+j'} \models \psi_1$, that is $D(w)^1 \models \psi_1 \mathcal{U} \psi_2$.

Finally we show that $D(w)^1 \models \psi_1 \mathcal{U} \psi_2 \implies w \models \psi_1 \mathcal{U} \psi_2$. By assumption, $\exists i \ D(w)^{1+i} \models \psi_2 \land \forall j < i, \ D(w)^{1+j} \models \psi_1$. If *i* is even then $D(w)^{i+1} = D(w^{i/2})^1$, hence $w^{i/2} \models \psi_2$, furthermore, for any j < i, noticeably for any even *j* strictly smaller than *i*, we have $D(w)^{j+1} \models \psi_1$, as *j* is even $D(w)^{j+1} = D(w^{j/2})^1$, hence by induction hypothesis $w^{j/2} \models \psi_1$, thus for any $k < (i/2), \ w^k \models \psi_1 \land w^{i/2} \models \psi_2$. Now if *i* is odd $D(w)^{i+1} = D(w^{i/2+1})$, hence $w^{i/2+1} \models \psi_2$, furthermore for any even j < i, (which also include the case j = (i/2) as *i* is odd), we have $D(w)^{j+1} \models \psi_1$. As $D(w)^{j+1} = D(w^{j/2})^1$, by induction hypothesis, we deduce that $w^k \models \psi_1$ for any $k \le i/2$. Therefore $w \models \psi_1 \mathcal{U} \psi_2$, which concludes the induction.