Model Checking - Exercise sheet 4

Exercise 4.1: Solution

$$
\varphi=\mathbf{G} \neg q \vee \mathbf{F}(q \wedge(\neg p \mathbf{W} s)) \text { and } \psi=\mathbf{G}((q \wedge \neg r \wedge \mathbf{F} r) \rightarrow((p \rightarrow(\neg r \mathcal{U}(s \wedge \neg r))) \mathcal{U} r))
$$

1. $\{p, q\}\{p, q, r, s\}\{s\}\{p, q, r\}\{q, r, s\}\{p, q\}\{p\}\left\}\{p, q\}^{\omega} \quad \models \varphi \models \psi\right.$
2. $\{p, q\}\{p, q, s\}\{s\}\{p, q, r\}\{q, r, s\}\{p, q\}\{p\}\left\}\{p, q\}^{\omega} \quad \models \varphi \models \psi\right.$
3. $\{p, q\}\{q\}\{p, q, s\}\{p, q, s\}\{p, s\}\{q, r, s\}\{q, r\}\{q, r, s\}\{r, s\}\{q, r, s\}^{\omega} \quad \models \varphi \models \psi$
4. $\{p, q\}\{p, q, s\}\{p, r, s\}\{q, s\}\{p, s\}\{r, s\}\{r\}^{\omega} \quad \vDash \varphi \models \psi$
5. $(\{p\}\{s\}\{r\}\{q\})^{\omega} \quad \nLeftarrow \varphi \models \psi$

Exercise 4.2: Solution

(a) (1) by definition of $\mathbf{G}, w \models \mathbf{G} \varphi$ iff $\forall n w^{n} \models \varphi$, fixing $n=0$ yields $w \models \varphi$. Thus $w \models \mathbf{G} \varphi \Longrightarrow w \models \varphi$
(2) by definition of $\mathbf{F}, w \models \mathbf{F} \varphi$ iff $\exists n w^{n} \models \varphi$. If $w \models \varphi$, then $w^{0} \models \varphi$, hence $w \models \mathbf{F} \varphi$.
(b) (3) by (1), since $\mathbf{G} \psi \Longrightarrow \psi$. (typically when $\psi=\mathbf{F} \varphi$)
(5) by (2), since $\psi \Longrightarrow \mathbf{F} \psi$. (when $\psi=\mathbf{G} \varphi$).
(c) Clearly if $w \models \mathbf{F} \varphi$ then $\exists n w^{n} \models \varphi$, thus $w^{n} \models \varphi$, hence $w \models \mathbf{F} \psi$
(d) If $\varphi \Longrightarrow \psi$ then $\neg \psi \Longrightarrow \neg \varphi$ thus $\mathbf{F} \neg \psi \Longrightarrow \mathbf{F} \neg \varphi$, so $\neg \mathbf{F} \neg \varphi \Longrightarrow \neg \mathbf{F} \neg \psi$, which can be rewritten as $\mathbf{G} \varphi \Longrightarrow \mathbf{G} \psi$.
(e) We rely on the fact that $\exists i \forall j \xi \Longrightarrow \forall j \exists i \xi$. More intuitively if we can find an i that works for all j, then for all j, we can find an i (and it will even be the same i for all j). Thus $\exists i \forall j w^{i+j} \models \varphi$ (i.e. $w \models \mathbf{F G} \varphi$) implies $\forall i \exists j w^{j+i} \models \varphi$, (i.e. $w \models \mathbf{G F} \varphi$).
(f) If $\exists i \exists j w^{i+j} \models \varphi$, then we could have directly existentially quantified the sum: $\exists s w^{s} \models \varphi$.
(g) (3) gives us $\mathbf{F} \varphi \Longrightarrow \mathbf{F F} \varphi$. (f) allows to conclude.
(h) by taking the negation of (g) over $\neg \varphi$, we obtain $\neg \mathrm{FF} \neg \varphi \equiv \neg \mathrm{F} \neg \varphi$. $\neg \mathrm{FF} \neg \varphi \equiv \mathrm{G} \neg \mathrm{F} \neg \varphi \equiv$ $\mathbf{G G} \neg \neg \varphi \equiv \mathbf{G G} \varphi$.
(i) (2) gives GF $\varphi \Longrightarrow$ FGF φ.
by (4) we have $\mathbf{F G} \psi \Longrightarrow \mathbf{G F} \psi$. With $\psi=\mathbf{F} \varphi$, we obtain, FGF
varphi $\Longrightarrow \mathbf{G F F} \varphi$. With (9), we conclude that $\mathbf{F G F} \varphi \Longrightarrow \mathbf{G F} \varphi$.
The other equivalence can be obtained by definition of $\mathbf{G} \varphi=\neg \mathbf{F} \neg \varphi$.

Exercise 4.3: Solution

1. We will show a more general property on LTL formulas: For any LTL formula φ, there exists 2 formulas $\mathcal{P}(\varphi)$ and $\mathcal{N}(\varphi)$ of NF-LTL such that $w \models \varphi \Longleftrightarrow w \models \mathcal{P}(\varphi)$ and $w \models \neg \varphi \Longleftrightarrow w \models \mathcal{N}(\varphi)$.
We show this property by structural induction over formulas:

- the atomic case is when φ is of the form $p, p \in A P$, clearly $\mathcal{P}(\varphi)=p$ and $\mathcal{N}(\varphi)=\neg p$ are both in NF-LTL. The property therefore holds for the atomic case
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, by induction hypothesis, we have $\mathcal{P}\left(\varphi_{1}\right), \mathcal{P}\left(\varphi_{2}\right), \mathcal{N}\left(\varphi_{1}\right), \mathcal{N}\left(\varphi_{2}\right)$, clearly we can define the two NF-LTL formulas $\mathcal{P}(\varphi)=\mathcal{P}\left(\varphi_{1}\right) \wedge \mathcal{P}\left(\varphi_{2}\right)$ and $\mathcal{N}(\varphi)=$ $\mathcal{N}\left(\varphi_{1}\right) \vee \mathcal{N}\left(\varphi_{2}\right)$, which are equivalent to φ and $\neg \varphi$ respectively. Therefore, conjunction preserves the property.
- if $\varphi=\neg \psi$, then by induction we have two NF-LTL formulas $\mathcal{P}(\psi)$ and $\mathcal{N}(\psi)$, that are equivalent to ψ and $\neg \psi$. Clearly, it suffices to take $\mathcal{P}(\varphi)=\mathcal{N}(\psi)$ and $\mathcal{N}(\varphi)=\mathcal{P}(\psi)$. Therefore negation preserves the property.
- if $\varphi=\mathbf{X} \psi$, we take $\mathcal{P}(\varphi)=\mathbf{X} \mathcal{P}(\psi)$ and $\mathcal{N}(\varphi)=\mathbf{X} \mathcal{N}(\psi)$. Let us emphasize that $\mathcal{N}(\varphi)$ is indeed equivalent to $\neg \varphi$. Let us show for any word $w, w \models \mathcal{N}(\varphi)$ iff $w \not \models \mathbf{X} \psi . w \models \mathcal{N}(\varphi)$ iff $w \models X \mathcal{N}(\psi)$ iff $w^{1} \models \mathcal{N}(\psi)$ (By induction hypothesis, we have that for any $u, u \neq \mathcal{N}(\psi)$ iff $u \not \vDash \psi$, typically when $u=w^{1}$) iff $w^{1} \not \models \psi$ iff $w \not \models \mathbf{X} \psi$ iff $w \not \models \varphi$.
- The last case is when $\varphi=\psi_{1} \mathcal{U} \psi_{2} . \mathcal{P}(\varphi)$ is easy to define: $\mathcal{P}(\varphi)=\mathcal{P}(\psi) \mathcal{U} \mathcal{P}\left(\psi_{2}\right)$. To define $\mathcal{N}(\varphi)$, we use the following equivalence: $w \vDash \neg\left(\psi_{1} \mathcal{U} \psi_{2}\right) \Longleftrightarrow w \vDash$ $\mathbf{G} \neg \psi_{2} \vee\left(\neg \psi_{2} \mathcal{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right)$, then we get that $\mathcal{N}(\varphi)=\mathbf{G} \mathcal{N}\left(\psi_{2}\right) \vee\left(\mathcal{N}\left(\psi_{2}\right) \mathcal{U}\left(\mathcal{N}\left(\psi_{1}\right) \wedge\right.\right.$ $\left.\mathcal{N}\left(\psi_{2}\right)\right)$.

2. We define $N_{\varphi}(w)$ inductively over NF-LTL $_{-G}$ formulas:

- If φ is atomic and $w \models \varphi$, then clearly for any word $w^{\prime} \in \Sigma^{\omega}, w(0) w^{\prime} \models \varphi$. Therefore in this case $N_{\varphi}(w)=0$.
- If $\varphi=\psi_{1} \wedge \psi_{2}$, let $w \models \varphi$, then as $w \models \psi_{1}$ and $w \models \psi_{2}$, we can write $N_{\varphi}(w)=$ $\max \left(N_{\psi_{1}}(w), N_{\psi_{2}}(w)\right)$. We have then for all $w^{\prime} \in \Sigma^{\omega}, w(0) \ldots w\left(N_{\varphi}(w)\right) w^{\prime} \models \varphi$.
- If $\varphi=\psi_{1} \vee \psi_{2}$, let $w \models \varphi$. Then if $w \models \psi_{1}$, we take $N_{\varphi}(w)=N_{\psi_{1}}(w)$, and we have that for any $w^{\prime} \in \Sigma^{\omega}, w(0) \ldots w\left(N_{\varphi}(w)\right) w^{\prime} \models \psi_{1}$, hence is also validates φ. Otherwise we take $N_{\varphi}(w)=N_{\psi_{2}}(w)$, in that case we know that $w \models \psi_{2}$ and for all $w^{\prime} \in \Sigma^{\omega}, w(0) \ldots w\left(N_{\varphi}(w)\right) w^{\prime} \models \psi_{2}$ hence it also validates φ.
- If $\varphi=\mathbf{X} \psi$, let $w \models \varphi$, then $w^{1} \models \psi$, hence we take $N_{\varphi}(w)=N_{\psi}\left(w^{1}\right)+1$.
- If $\varphi=\psi_{1} \mathcal{U} \psi_{2}$, let $w \models \varphi$, then we know that there exists an integer i such that $\forall j<i, w^{j} \models \psi_{1}$ and $w^{i} \models \psi_{2}$.
We take $N_{\varphi}(w)=\max \left(i+N_{\psi_{2}}\left(w^{i}\right), \max _{j=0}^{i}\left(j+N_{\psi_{1}}\left(w^{j}\right)\right)\right)$.
We remark, by induction hypothesis that for any w^{\prime},
$\forall j<i, w(j) \ldots w\left(N_{\varphi}(w)\right) w^{\prime} \models \psi_{1}$ and $w(i) \ldots w\left(N_{\varphi}(w)\right) w^{\prime} \models \psi_{2}$,
as for any $j<i, w(j) \ldots w\left(N_{\varphi}(w)\right) w^{\prime}$ is $w^{j}(0) \ldots w^{j}\left(N_{\varphi}(w)-j\right) w^{\prime}$ and as $N_{\varphi}(w)-j \geq$ $N_{\psi_{1}}\left(w^{j}\right)$, we have that $w^{j}(0) \ldots w^{j}\left(N_{\varphi}(w)-j\right) w^{\prime} \models \psi_{1}$; also as $N_{\varphi}(w)-i \geq N_{\psi_{2}}\left(w^{i}\right)$, $w^{i}(0) \ldots w\left(N_{\varphi}(w)\right) w^{\prime} \models \psi_{2}$.

3. By induction we show that for any NF-LTL $_{-X}$ formula, we have

$$
w \models \varphi \Longleftrightarrow D(w) \models \varphi \Longleftrightarrow D(w)^{1} \models \varphi
$$

- The case of atomic formulas is trivial: only the first letter matters. As $w(0)=$ $D(w)(0)=D(w)^{1}(0)$, this property holds for atomic NF-LTL ${ }_{-X}$
- The case of disjunction and conjunctions is trivially true.
- If $\varphi=\mathbf{G} \psi$, let us first show that $w \models \varphi \Longrightarrow D(w) \models \varphi$. For that we need to show that $\forall i, D(w)^{i} \models \psi$. If i is even, $D(w)^{i}=D\left(w^{i / 2}\right)$. Since $w \models \varphi, w^{i / 2} \models \psi$ hence by induction hypothesis $D\left(w^{i / 2}\right) \models \psi$ therefore $D(w)^{i} \models \psi$. If i is odd, then $D(w)^{i}=D\left(w^{i / 2}\right)^{1}$, since $w \models \varphi, w^{i / 2} \models \psi$ hence by induction hypothesis $D\left(w^{i / 2}\right)^{1} \models \psi$ therefore $D(w)^{i} \models \psi$.
Then we remark that $w \models \varphi \Longrightarrow D(w)^{1} \models \varphi$, as $\varphi=\mathbf{G} \psi$.
Finally we need to show that $D(w)^{1} \models \mathbf{G} \psi$ implies $w \models \mathbf{G} \psi$. The former is equivalent to $\forall i, D(w)^{1+i} \models \psi$, noticeably it holds for any even value of i. Furthermore, if i is even, $D(w)^{1+i}=D\left(w^{i / 2}\right)^{1}$. By induction hypothesis, it implies that for any even value of $i, w^{i / 2} \models \psi$, therefore $w \models \mathbf{G} \psi$.
- Finally we treat the case where $\varphi=\psi_{1} \mathcal{U} \psi_{2}$. First we show that $w \models \psi_{1} \mathcal{U} \psi_{2} \Longrightarrow$ $D(w) \models \psi_{1} \mathcal{U} \psi_{2}$. There is a k s.t. $w^{k} \models \psi_{2}$ and $\forall l<k, w^{l} \models \psi_{2}$, we need to show that $\exists i D(w)^{i} \models \psi_{2} \wedge \forall j<i, D(w)^{j} \models \psi_{1}$. Let $i=2 * k$, by induction hypothesis $D(w)^{i} \models \psi_{2}$. Take $j<i$, either j is even, in which case $D(w)^{j}=D\left(w^{j / 2}\right)$ and by induction hypothesis (as $j / 2<k) D(w)^{j} \models \psi_{1}$, or j is odd, and then $D(w)^{j}=D\left(w^{j / 2}\right)^{1}$ and the induction hypothesis (as $j / 2<k$) also allows us to conclude that $D(w)^{j} \models \psi_{1}$.
Then we show that $D(w) \models \psi_{1} \mathcal{U} \psi_{2} \Longrightarrow D(w)^{1} \models \psi_{1} \mathcal{U} \psi_{2}$. If $D(w) \models \psi_{2}$, by induction hypothesis $D(w)^{1} \models \psi_{2}$, hence $D(w)^{1} \models \psi_{1} \mathcal{U} \psi_{2}$, if $D(w) \not \vDash \psi_{2}$, then $\exists i>1, D(w)^{i} \models \psi_{2} \wedge \forall j<i, D(w)^{j} \models \psi_{1}$, which implies that $\exists i^{\prime}, ~ D(w)^{1+i^{\prime}} \models$ $\psi_{2} \wedge \forall j^{\prime}<i^{\prime}, D(w)^{1+j^{\prime}} \models \psi_{1}$, that is $D(w)^{1} \models \psi_{1} \mathcal{U} \psi_{2}$.
Finally we show that $D(w)^{1} \models \psi_{1} \mathcal{U} \psi_{2} \Longrightarrow w \models \psi_{1} \mathcal{U} \psi_{2}$. By assumption, $\exists i D(w)^{1+i} \models \psi_{2} \wedge \forall j<i, D(w)^{1+j} \models \psi_{1}$. If i is even then $D(w)^{i+1}=D\left(w^{i / 2}\right)^{1}$, hence $w^{i / 2} \models \psi_{2}$, furthermore, for any $j<i$, noticeably for any even j strictly smaller than i, we have $D(w)^{j+1} \models \psi_{1}$, as j is even $D(w)^{j+1}=D\left(w^{j / 2}\right)^{1}$, hence by induction hypothesis $w^{j / 2} \models \psi_{1}$, thus for any $k<(i / 2), w^{k} \models \psi_{1} \wedge w^{i / 2} \models \psi_{2}$. Now if i is odd $D(w)^{i+1}=D\left(w^{i / 2+1}\right)$, hence $w^{i / 2+1} \models \psi_{2}$, furthermore for any even $j<i$, (which also include the case $j=(i / 2)$ as i is odd), we have $D(w)^{j+1} \models \psi_{1}$. As $D(w)^{j+1}=D\left(w^{j / 2}\right)^{1}$, by induction hypothesis, we deduce that $w^{k} \models \psi_{1}$ for any $k \leq i / 2$. Therefore $w=\psi_{1} \mathcal{U} \psi_{2}$, which concludes the induction.

