I7

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth
7.05.2015

Model Checking - Exercise sheet 4

Exercise 4.1: Model checking

Let $A P=\{p, q, r, s\}$, which of the formulas $\varphi=\mathbf{G} \neg q \vee \mathbf{F}(q \wedge(\neg p \mathbf{W} s))$ and $\psi=$ $\mathbf{G}((q \wedge \neg r \wedge \mathbf{F} r) \rightarrow((p \rightarrow(\neg r \mathcal{U}(s \wedge \neg r))) \mathcal{U} r))$ hold for the following words:

1. $\{p, q\}\{p, q, r, s\}\{s\}\{p, q, r\}\{q, r, s\}\{p, q\}\{p\}\left\}\{p, q\}^{\omega}\right.$
2. $\{p, q\}\{p, q, s\}\{s\}\{p, q, r\}\{q, r, s\}\{p, q\}\{p\}\left\}\{p, q\}^{\omega}\right.$
3. $\{p, q\}\{q\}\{p, q, s\}\{p, q, s\}\{p, s\}\{q, r, s\}\{q, r\}\{q, r, s\}\{r, s\}\{q, r, s\}^{\omega}$
4. $\{p, q\}\{p, q, s\}\{p, r, s\}\{q, s\}\{p, s\}\{r, s\}\{r\}^{\omega}$
5. $(\{p\}\{s\}\{r\}\{q\})^{\omega}$

Exercise 4.2

We recall the following implications hold for any $\operatorname{LTL} \varphi$:

(a) Using the definition of \mathbf{F} and \mathbf{G}, and the semantics of \mathcal{U}, show (1) and (2)
(b) Deduce (3) and (5)
(c) Using the defintion of the semantics of \mathbf{F}, show that if $\varphi \Longrightarrow \psi$ then $\mathbf{F} \varphi \Longrightarrow \mathbf{F} \psi$
(d) Deduce if $\varphi \Longrightarrow \psi$ then $\mathbf{G} \varphi \Longrightarrow \mathbf{G} \psi$
(e) Deduce (4)
(f) Using the semantics of \mathbf{F}, show that $\mathbf{F F} \varphi \Longrightarrow \mathbf{F} \varphi$
(g) Deduce (6)
(h) Deduce (9)
(i) Using the previously shown implications, deduce (7) and (8). Which one do you need for which direction?

Exercise 4.3

A formula φ over the set of propositions AP is in positive normal form when the negations only appear directly in front of propositions $a \in \mathbf{A P}$. For instance $\neg \mathbf{G} a$ is not in positive normal form while true $\mathcal{U} \neg a$ is.

We denote NF-LTL the set of formulas in positive normal form over the operators $\mathbf{X}, \mathcal{U}, \mathbf{G}, \wedge, \vee$ and \neg.

1. Show by induction, using the equivalences shown in the previous exercise sheet that any LTL formula φ admits an equivalent NF-LTL formula.
2. Let $\mathbf{N F}^{-L T L} \mathbf{- G}_{\mathbf{G}}$ the formulas of $\mathbf{N F}-\mathbf{L T L}$ in which the operator \mathbf{G} does not occur. Show that for any formula φ inNF-LTL $_{-\mathbf{G}}$, for any word $w \in \Sigma^{\omega}$, such that $w \models \varphi$ there exists an integer $N_{\varphi}(w)$ such that $w_{0} \ldots w_{N_{\varphi}(w)}$ characterizes whether $w \models \varphi$ or not. More formally for any $w^{\prime} \in \Sigma^{\omega}$

$$
w \models \varphi \Longleftrightarrow w_{0} \ldots w_{N_{\varphi}(w)} w^{\prime} \models \varphi
$$

3. Let NF-LTL $_{-\mathbf{x}}$ the set of NF-LTL in which \mathbf{X} does not occur. Show that any NF-LTL $_{-\mathbf{x}}$ formula φ can not distinguish $w \in \Sigma^{\omega}$ and $D(w)=w_{0} w_{0} w_{1} w_{1} \ldots$, i.e.:

$$
w \models \varphi \Longleftrightarrow D(w) \models \varphi
$$

