Technische Universität München

Summer Semester 2015

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth 7.05.2015

Model Checking – Exercise sheet 4

Exercise 4.1: Model checking

Let $AP = \{p, q, r, s\}$, which of the formulas $\varphi = \mathbf{G} \neg q \lor \mathbf{F}(q \land (\neg p \mathbf{W}s))$ and $\psi = \mathbf{G}((q \land \neg r \land \mathbf{F}r) \rightarrow ((p \rightarrow (\neg r \ \mathcal{U}(s \land \neg r))) \ \mathcal{U}r))$ hold for the following words:

- 1. $\{p,q\}\{p,q,r,s\}\{s\}\{p,q,r\}\{q,r,s\}\{p,q\}\{p\}\{\}\{p,q\}^{\omega}$
- 2. $\{p,q\}\{p,q,s\}\{s\}\{p,q,r\}\{q,r,s\}\{p,q\}\{p\}\{\}\{p,q\}^{\omega}$
- 3. $\{p,q\}\{q\}\{p,q,s\}\{p,q,s\}\{p,s\}\{q,r,s\}\{q,r\}\{q,r,s\}\{r,s\}\{q,r,s\}^{\omega}$
- 4. $\{p,q\}\{p,q,s\}\{p,r,s\}\{q,s\}\{p,s\}\{r,s\}\{r\}^{\omega}$
- 5. $(\{p\}\{s\}\{r\}\{q\})^{\omega}$

Exercise 4.2

I7

We recall the following implications hold for any LTL φ :

- (a) Using the definition of **F** and **G**, and the semantics of \mathcal{U} , show (1) and (2)
- (b) Deduce (3) and (5)
- (c) Using the definition of the semantics of **F**, show that if $\varphi \implies \psi$ then $\mathbf{F}\varphi \implies \mathbf{F}\psi$
- (d) Deduce if $\varphi \implies \psi$ then $\mathbf{G}\varphi \implies \mathbf{G}\psi$
- (e) Deduce (4)
- (f) Using the semantics of **F**, show that $\mathbf{FF}\varphi \implies \mathbf{F}\varphi$
- (g) Deduce (6)
- (h) Deduce (9)
- (i) Using the previously shown implications, deduce (7) and (8). Which one do you need for which direction ?

Exercise 4.3

A formula φ over the set of propositions **AP** is in *positive normal form* when the negations only appear directly in front of propositions $a \in \mathbf{AP}$. For instance $\neg \mathbf{G}a$ is not in positive normal form while **true** $\mathcal{U} \neg a$ is.

We denote **NF-LTL** the set of formulas in positive normal form over the operators $\mathbf{X}, \mathcal{U}, \mathbf{G}, \wedge, \vee$ and \neg .

- 1. Show by induction, using the equivalences shown in the previous exercise sheet that any LTL formula φ admits an equivalent NF-LTL formula.
- 2. Let $\mathbf{NF}-\mathbf{LTL}_{-\mathbf{G}}$ the formulas of $\mathbf{NF}-\mathbf{LTL}$ in which the operator \mathbf{G} does not occur. Show that for any formula φ in $\mathbf{NF}-\mathbf{LTL}_{-\mathbf{G}}$, for any word $w \in \Sigma^{\omega}$, such that $w \models \varphi$ there exists an integer $N_{\varphi}(w)$ such that $w_0 \dots w_{N_{\varphi}(w)}$ characterizes whether $w \models \varphi$ or not. More formally for any $w' \in \Sigma^{\omega}$

$$w \models \varphi \iff w_0 \dots w_{N_{\varphi}(w)} w' \models \varphi$$

3. Let $\mathbf{NF}-\mathbf{LTL}_{-\mathbf{X}}$ the set of $\mathbf{NF}-\mathbf{LTL}$ in which \mathbf{X} does not occur. Show that any $\mathbf{NF}-\mathbf{LTL}_{-\mathbf{X}}$ formula φ can not distinguish $w \in \Sigma^{\omega}$ and $D(w) = w_0 w_0 w_1 w_1 \dots$, i.e.:

$$w \models \varphi \iff D(w) \models \varphi$$