Technische Universität München I7

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth

June 2015

Solution of Exercise sheet 2

Prequels

We give a few important logical equivalences: let ξ, ζ and ν some logical statements,

$\xi \to \zeta$	\iff	$\neg \xi \lor \zeta$	(definition of implication)
$\xi \wedge \zeta$	\iff	$\neg(\neg \xi \lor \neg \zeta)$	(de Morgan's law)
$\nu \lor (\xi \land \zeta)$	\iff	$(\nu \lor \xi) \land (\nu \lor \zeta)$	(distributivity of \land over \lor)
$\forall x \ \xi$	\iff	$\neg \exists x \ (\neg \xi)$	(duality between \forall and \exists)
$\forall x > k, \xi$	\iff	$\forall x \; ((x > k) \to \xi)$	a widely used notation
$\neg \forall x > k, \xi$	\iff	$\exists x > k, \ \neg \xi$	not hard to prove
		$\int \exists x \ \xi \iff \exists x \ \zeta$	
$\xi \iff \zeta$	\implies	$ \ \ \nu \wedge \xi \iff \nu \wedge \zeta $	we can rewrite within formulas
		$\neg \xi \iff \neg \zeta$	

This list is not exhaustive, especially concerning the \lor and \land operators, which are also associative, commutative, idempotent; false is neutral for \lor and is the zero of \land and conversely for true.

Structural Induction over LTL Formulas

For a formal and accurate definition, it is well-founded induction over the set of formulas using the well-order "is a subformula". The boring details may be inspected in the Wikipedia article on well-founded induction.

Assume we want to show some property P holds for any LTL formula, for that we need to show:

- Property *P* holds for atomic LTL formulas,
- The operators preserve the property. For any LTL formulas φ and ψ such that φ and φ satisfy the property P we have to show that:
 - $-\varphi \mathcal{U}\psi$ satisfies P
 - $-\varphi \lor \psi$ satisfies P
 - $\mathbf{X} \varphi$ satisfies P
 - $\neg \varphi$ satisfies P

Intuitively this ensures any formula will satisfy property P, as as formula can be seen as a tree whose leaves satify property P and each node preserves the property P.

This technique can be generalized to other type of inductively defined formulas. Remark that it is crucial that property P is the same everywhere in the prove.

(tiny) LTL cheat sheet

 $p \in AP$ and $p \in w(0)$ p holds **now** p $w \not\models \varphi$ φ doesn't hold $\neg \varphi$ $w \models \varphi \text{ or } w \models \psi$ $\varphi \vee \psi$ needs not be always the same $w^1 \models \varphi$ $\neg \mathbf{X} \neg \varphi$ $\mathbf{X}\varphi$ next φ $\psi \vee (\varphi \wedge \mathbf{X}(\varphi \ \mathcal{U} \ \psi)) \quad \exists i (w^i \models \psi \land \forall k < i, \ w^k \models \varphi)$ $\varphi \mathcal{U} \psi$ ψ may hold right away $\forall n \; w^n \models \varphi$ $\mathbf{G}\varphi$ $\neg(\top \mathcal{U} \neg \varphi)$ φ is always true $\exists n \ w^n \models \varphi \\ \forall i \ (\forall j < i, \ w^j \not\models \varphi) \rightarrow w^i \models \psi$ φ is true (at least) once $\mathbf{F}\varphi$ $\neg \mathbf{G} \neg \varphi$ $\neg(\neg\varphi \ \mathcal{U} \neg \psi)$ ψ may get false only after φ does $\varphi \mathbf{R} \psi$ $\exists t \; \forall n > t, \; w^n \models \varphi$ $\mathbf{F}\mathbf{G}\varphi$ $\mathbf{GFG}\varphi$ φ will always hold $\forall t \exists n > t, w^n \models \varphi$ $\mathbf{FGF}\varphi$ φ holds infinitely often $\mathbf{GF}\varphi$

 $\begin{array}{ll} \mathbf{G}(p \to \mathbf{F}q) & \text{Each } p \text{ is eventually followed by a } q \\ \mathbf{G}(p \to \mathbf{X}(\mathbf{G}\neg q)) & \text{After the first } p, q \text{ no longer occurs} \end{array}$

Exercise 2.1: Solution

$\varphi =$	$\mathbf{GF}q$ and $\psi =$	$\mathbf{G}((q \wedge \neg r))$	$\wedge \mathbf{F}r) \rightarrow ((p)$	$p \to (\neg r)$	$\mathcal{U}(s \wedge \neg r))$	$(\mathcal{U} r))$
	1		1	1 /		

word	$w\models\varphi$	$w \models \psi$
$-\{p\}\{p\}\{p\}^{\omega}$	no	yes
$\{q\}\{q\}\{q\}^\omega$	yes	yes
$\{s\}\{s\}\{s\}^\omega$	no	yes
$\{q,r\}\{q,r\}\{q,r\}^\omega$	yes	yes
$\emptyset \emptyset \emptyset^{\omega}$	no	yes
${r}{q}{q}{q}{({r}{q})^{\omega}}$	yes	yes
${r}{s}{r}{q}{q}{({r}{q})^{\omega}}$	yes	yes
${r}{r}{q}{s}{q}{({r}{q})^{\omega}}$	yes	yes
$rprqqq(rrrqqq)^{\omega}$	yes	yes
$rprqqqs(rrrqqq)^{\omega}$	yes	yes
$rrpqqqs(rrrqqq)^{\omega}$	yes	yes
$rrpqqsq(rrrqqq)^{\omega}$	yes	yes
$rrpqqqrsr(qqrr)^{\omega}$	yes	yes
$qqqrrpqqqqqsqqq^{\omega}$	yes	yes
$qqqrrpqpqpqqsqqrq^{\omega}$	yes	yes

Exercise 2.2: Solution

- 1. If a program $P \models \mathbf{F}g$ then any trace of that program will give a result. For instance $\{g\}\emptyset^{\omega}$ is an example of a valid trace and \emptyset^{ω} is not.
- 2. $p \to \mathbf{G}(\neg r \land \neg s)$ would only ensure the desired property if the program first gives a result, for instance $\{s\}\{r\}\{g\}(\{s\}\{r\})^{\omega}$ would satisfy this LTL formula. Thus the property is $\mathbf{G}(p \to \mathbf{G}(\neg r \land \neg s))$, or depending on the semantics of the english word

"after", only $\mathbf{G}(p \to \mathbf{XG}(\neg r \land \neg s))$ may be considered correct. Typically $\{g, s, r\} \emptyset^{\omega}$ is only satisfying the second formula.

- 3. **GF**s indicates that s holds infinitely often $(\{s\}^{\omega} \text{ satsifies this property, } \{s\}(\{e\}^{\omega}) \text{ does not.}$
- 4. This time we need the next operator, (otherwise, we would have $g \to \mathbf{G} \neg g$, which implies $g \to \neg g$, thus $\neg g$), $\mathbf{F}g \wedge \mathbf{G}(g \to \mathbf{X}\mathbf{G} \neg g)$.
- 5. It is not possible to express in LTL that property if we consider that every send can only match one receive: that language would not be regular. However if we consider that a send responds to every preceding receive, then the property is equivalent to every receive there will later be a send. $\mathbf{G}(r \to X\mathbf{F}s)$.
- 6. The most succint way to write this property is $(\neg s \land \neg g) \mathbf{W} r$.

Exercise 2.3: Solution

Remark that \emptyset^{ω} satisfies none of the following formulas, while $\{p, q, r, s\}^{\omega}$ satisfies all of them.

- 1. $p \mathcal{U}(q \vee \mathbf{G}q)$: since $\mathbf{G}q \implies q$, this formula is equivalent to $p \mathcal{U}q$.
- 2. $\mathbf{G}(q \to \mathbf{F}s)$ is s responds to q.
- 3. $\mathbf{G}((q \wedge \neg r \wedge \mathbf{F}r) \to (\neg p \ \mathcal{U} r))$ is p is false between q and r.
- 4. $p \mathcal{U} \mathbf{G} q$, this formula state that the word consists of a finite prefix of p (other predicates may hold) followed by an infinite suffix of q (other predicates may hold).
- 5. $p \mathcal{U} \mathbf{F} q$: this formula is equivalent to $\mathbf{F} q$. (eventually q will hold).
- 6. $\mathbf{G}(p \ \mathcal{U} \mathbf{G}q)$: this formula is equivalent to $p \ \mathcal{U} \mathbf{G}q$, indeed if that formula holds at the first position, it holds at every position.
- 7. (**G***p*) \mathcal{U} **G***q*: this formula is equivalent to $p \mathcal{U}$ **G** $(p \land q)$.

Exercise 2.4: Solution

$$\begin{array}{lll} - & w \models \mathsf{G}\varphi & \iff w \models \neg(\top \mathcal{U} \neg \varphi) \\ & \iff \neg(\exists i(w^i \models \neg \varphi \land \forall k < i, w^k \models \top)) \\ & \iff \forall i \neg w^i \models \neg \varphi \lor \forall \forall k < i, w^k \models \top \\ & \iff \forall i \in \mathbb{N} \ w^i \models \varphi \\ - & w \models \varphi \mathbf{R}\psi & \iff \neg(\neg \varphi \mathcal{U} \neg \psi) \\ & \iff \neg \exists i(w^i \models \neg \psi \land \forall j < i, w^j \models \neg \varphi) \\ & \iff \forall i \in \mathbb{N} \ (\forall j < i, w^j \not\models \varphi) \rightarrow w^i \models \psi \\ - & w \models \neg(\varphi \mathcal{U}\psi) & \iff w \models \neg \varphi \mathbf{R} \neg \psi \\ - & w \models \varphi \mathcal{U}\psi & \iff \exists i(w^i \models \psi \land \forall j < i, w^j \models \varphi) \\ & \iff (i = 0 \land w \models \psi) \lor \left(\exists i > 0, \left\{ \begin{array}{c} w^i \models \psi \land (j = 0 \land w^0 \models \varphi) \\ \land \forall 0 < j < i, w^j \models \varphi \end{array} \right) \\ & \iff w \models \psi \lor (\varphi \land \mathbf{X}(\varphi \mathcal{U}\psi)) \\ - & w \models \varphi \mathbf{R}\psi & \iff w \models \neg(\neg \varphi \mathcal{U} \neg \psi) \\ & \iff w \models \psi \lor (\varphi \land \mathbf{X}(\varphi \mathcal{U}\psi)) \\ - & w \models \varphi \mathbf{R}\psi & \iff w \models \neg(\neg \varphi \mathcal{U} \neg \psi) \\ & \iff \forall i (w^i \models \psi \land \exists j < i, w^j \models \varphi) \\ & \iff \forall i (w^i \models \psi \lor \exists j < i, w^j \models \varphi) \\ & \iff \forall i (w^i \models \psi \lor \exists j < i, w^j \models \varphi) \\ & \iff \forall i (w^i \models \psi \lor \exists j < i, w^j \models \varphi) \\ & \iff \forall i (w^i \not\models \psi \rightarrow \exists j < i, w^j \models \varphi) \end{array}$$

We need to remark that if $\forall i \ w^i \models \psi$, then $w \models \varphi \mathbf{R} \psi$. If, on the contrary, ψ does not always hold, we can find a smallest position k, such that ψ doesn't hold: that is $\exists k \ \forall j < k, \ w^j \models \psi \land w^k \not\models \psi. \ \varphi \mathbf{R} \psi$ therefore implies (by instanciating the universal quantification with k), that $\exists j < k, \ w^j \models \varphi$. Thus we have that $(w \not\models \mathbf{G}\psi \text{ and } w \models \varphi \mathbf{R} \psi)$ implies $\exists j < k, \ w \models \varphi$, and as $\forall i < k, \ w \models \psi$, we deduce that it implies $w \models \psi \ \mathcal{U}(\varphi \land \psi)$. Therefore $(w \models \varphi \mathbf{R} \psi \text{ and } w \models \mathbf{G} \psi)$ or $(w \models \varphi \mathbf{R} \psi \text{ and } w \not\models \mathbf{G} \psi)$ implies either $w \models \mathbf{G} \psi$ or $w \models \psi \ \mathcal{U}(\varphi \land \psi)$ thus $w \models \varphi \mathbf{R} \psi \implies w \models \mathbf{G} \psi \lor (\psi \ \mathcal{U}(\varphi \land \psi))$.

To show the converse implication, assume that $w \models \mathbf{G}\psi \lor (\psi \ \mathcal{U}(\varphi \land \psi))$. Let us show that for any $i, w^i \not\models \psi \implies \exists j < i, w^j \models \varphi$. If i is such that $w^i \not\models \psi$, then by hypothesis $w \models \psi \ \mathcal{U}(\varphi \land \psi)$ so this i is necessarily greater than the position where $\varphi \land \psi$ hold, hence there is a position before i where φ holds.

Exercise 2.5: Solution

Any trace of K_1 is also a trace K_2 , therefore $K_2 \models \varphi$ is equivalent to $\forall w \in K_2, w \models \varphi$. As $\forall w \in K_1, w \in K_2$, we have $\forall w \in K_1, w \models \varphi$, hence $K_2 \models \varphi \implies K_1 \models \varphi$.