I7

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth

June 2015

Solution of Exercise sheet 2

Prequels

We give a few important logical equivalences: let ξ, ζ and ν some logical statements,

$$
\begin{array}{lll}
\xi \rightarrow \zeta & \Longleftrightarrow \neg \xi \vee \zeta & \text { (definition of implication) } \\
\xi \wedge \zeta & \Longleftrightarrow \neg(\neg \xi \vee \neg \zeta) & \text { (de Morgan’s law) } \\
\nu \vee(\xi \wedge \zeta) & \Longleftrightarrow(\nu \vee \xi) \wedge(\nu \vee \zeta) & \text { (distributivity of } \wedge \text { over } \vee \text {) } \\
\forall x \xi & \Longleftrightarrow \neg \exists x(\neg \xi) & \text { (duality between } \forall \text { and } \exists \text {) } \\
\forall x>k, \xi & \Longleftrightarrow \forall x((x>k) \rightarrow \xi) & \text { a widely used notation } \\
\neg \forall x>k, \xi & \Longleftrightarrow \exists x>k, \neg \xi & \text { not hard to prove } \\
\xi \Longleftrightarrow \exists x \zeta & \Longleftrightarrow \begin{cases}\exists x \xi \Longleftrightarrow \exists x \\
\nu \wedge \xi \Longleftrightarrow \nu \wedge \zeta & \text { we can rewrite within formulas } \\
\neg \xi \Longleftrightarrow \neg \zeta\end{cases} &
\end{array}
$$

This list is not exhaustive, especially concerning the \vee and \wedge operators, which are also associative, commutative, idempotent; false is neutral for \vee and is the zero of \wedge and conversely for true.

Structural Induction over LTL Formulas

For a formal and accurate definition, it is well-founded induction over the set of formulas using the well-order "is a subformula". The boring details may be inspected in the Wikipedia article on well-founded induction.

Assume we want to show some property P holds for any LTL formula, for that we need to show:

- Property P holds for atomic LTL formulas,
- The operators preserve the property. For any LTL formulas φ and ψ such that φ and φ satisfy the property P we have to show that:
- $\varphi \mathcal{U} \psi$ satisfies P
$-\varphi \vee \psi$ satisfies P
- $\mathbf{X} \varphi$ satisfies P
- $\neg \varphi$ satisfies P

Intuitively this ensures any formula will satisfy property P, as as formula can be seen as a tree whose leaves satify property P and each node preserves the property P.

This technique can be generalized to other type of inductively defined formulas. Remark that it is crucial that property P is the same everywhere in the prove.

(tiny) LTL cheat sheet

p		$p \in A P$ and $p \in w(0)$
$\neg \varphi$		p holds now
$\varphi \vee \psi$		$w \models \varphi$ or $w \models \psi$
$\mathbf{X} \varphi$	$\neg \mathbf{X} \neg \varphi$	$w^{1} \models \varphi$
$\varphi \mathcal{U} \psi$	$\psi \vee(\varphi \wedge \mathbf{X}(\varphi \mathcal{U} \psi))$	$\exists i\left(w^{i} \models \psi \wedge \forall k<i, w^{k} \models \varphi\right)$
$\mathbf{G} \varphi$	$\neg(\top \mathcal{U} \neg \varphi)$	$\forall n w^{n} \models \varphi$
$\mathbf{F} \varphi$	$\neg \mathbf{G} \neg \varphi$	$\exists n w^{n} \models \varphi$
$\varphi \mathbf{R} \psi$	$\neg(\neg \varphi \mathcal{U} \neg \psi)$	$\forall i\left(\forall j<i, w^{j} \not \models \varphi\right) \rightarrow w^{i} \models \psi$ may hold right away
$\mathbf{F G G} \varphi$	$\mathbf{G F G} \varphi$	$\exists t \forall n>t, w^{n} \models \varphi$
$\mathbf{G F} \varphi$	$\mathbf{F G F} \varphi$	$\forall t \exists n>t, w^{n} \vDash \varphi$

$$
\begin{array}{ll}
\mathbf{G}(p \rightarrow \mathbf{F} q) & \text { Each } p \text { is eventually followed by a } q \\
\mathbf{G}(p \rightarrow \mathbf{X}(\mathbf{G} \neg q)) & \text { After the first } p, q \text { no longer occurs }
\end{array}
$$

Exercise 2.1: Solution

word	$w \models \varphi$	$w \models \psi$
\{p\} $\{p\}\{p\}^{\omega}$	no	yes
\{q\} $\{q\}\{q\}^{\omega}$	yes	yes
\{s\} $\{s\}\{s\}^{\omega}$	no	yes
$\{q, r\}\{q, r\}\{q, r\}^{\omega}$	yes	yes
Øøø ${ }^{\text {c }}$	no	yes
$\{r\}\{r\}\{q\}\{q\}(\{r\}\{q\})^{\omega}$	yes	yes
$\{r\}\{s\}\{r\}\{q\}\{q\}(\{r\}\{q\}\{q\})^{\omega}$	yes	yes
\{r\}\{r\}\{q\}\{s\}\{q\}(\{r\}\{r\}\{q\}) ${ }^{\omega}$	yes	yes
rprqqq(rrrqqq) ${ }^{\omega}$	yes	yes
rprqqqs $(r r r q q q){ }^{\omega}$	yes	yes
rrpqqqs $(r r r q q q){ }^{\omega}$	yes	yes
rrpqqsq(rrrqqq) ${ }^{\omega}$	yes	yes
rrpqqqrsr $(q q r r)^{\omega}$	yes	yes
qqqrrpqqqqsqqq ${ }^{\omega}$	yes	yes
qqqrrpqpqpqqsqqrq ${ }^{\omega}$	yes	yes

Exercise 2.2: Solution

1. If a program $P \models \mathbf{F} g$ then any trace of that program will give a result. For instance $\{g\} \emptyset^{\omega}$ is an example of a valid trace and \emptyset^{ω} is not.
2. $p \rightarrow \mathbf{G}(\neg r \wedge \neg s)$ would only ensure the desired property if the program first gives a result, for instance $\{s\}\{r\}\{g\}(\{s\}\{r\})^{\omega}$ would satisfy this LTL formula. Thus the property is $\mathbf{G}(p \rightarrow \mathbf{G}(\neg r \wedge \neg s))$, or depending on the semantics of the english word
"after", only $\mathbf{G}(p \rightarrow \mathbf{X G}(\neg r \wedge \neg s))$ may be considered correct. Typically $\{g, s, r\} \emptyset^{\omega}$ is only satisfying the second formula.
3. GF s indicates that s holds infinitely often $\left(\{s\}^{\omega}\right.$ satsifies this property, $\{s\}\left(\{e\}^{\omega}\right)$ does not.
4. This time we need the next operator, (otherwise, we would have $g \rightarrow \mathbf{G} \neg g$, which implies $g \rightarrow \neg g$, thus $\neg g), \mathbf{F} g \wedge \mathbf{G}(g \rightarrow \mathbf{X G} \neg g)$.
5. It is not possible to express in LTL that property if we consider that every send can only match one receive: that language would not be regular. However if we consider that a send responds to every preceding receive, then the property is equivalent to every receive there will later be a send. $\mathbf{G}(r \rightarrow X \mathbf{F} s)$.
6. The most succint way to write this property is $(\neg s \wedge \neg g) \mathbf{W} r$.

Exercise 2.3: Solution

Remark that \emptyset^{ω} satisfies none of the following formulas, while $\{p, q, r, s\}^{\omega}$ satisfies all of them.

1. $p \mathcal{U}(q \vee \mathbf{G} q)$: since $\mathbf{G} q \Longrightarrow q$, this formula is equivalent to $p \mathcal{U} q$.
2. $\mathbf{G}(q \rightarrow \mathbf{F} s)$ is s responds to q.
3. $\mathbf{G}((q \wedge \neg r \wedge \mathbf{F} r) \rightarrow(\neg p \mathcal{U} r))$ is p is false between q and r.
4. $p \mathcal{U} \mathbf{G} q$, this formula state that the word consists of a finite prefix of p (other predicates may hold) followed by an infinite suffix of q (other predicates may hold).
5. $p \mathcal{U} \mathbf{F} q$: this formula is equivalent to $\mathbf{F} q$. (eventually q will hold).
6. $\mathbf{G}(p \mathcal{U} \mathbf{G} q)$: this formula is equivalent to $p \mathcal{U} \mathbf{G} q$, indeed if that formula holds at the first position, it holds at every position.
7. $(\mathbf{G} p) \mathcal{U} \mathbf{G} q$: this formula is equivalent to $p \mathcal{U} \mathbf{G}(p \wedge q)$.

Exercise 2.4: Solution

$$
\begin{aligned}
& -w \models \mathbf{G} \varphi \quad \Longleftrightarrow w \models \neg(\top \mathcal{U} \neg \varphi) \\
& \Longleftrightarrow \neg\left(\exists i\left(w^{i} \models \neg \varphi \wedge \forall k<i, w^{k} \models \top\right)\right) \\
& \Longleftrightarrow \forall i \neg w^{i} \models \neg \varphi \vee \neg \forall k<i, w^{k} \models \top \\
& \Longleftrightarrow \forall i \in \mathbb{N} w^{i} \models \varphi \\
& -w \models \varphi \mathbf{R} \psi \quad \Longleftrightarrow \neg(\neg \varphi \mathcal{U} \neg \psi) \\
& \Longleftrightarrow \neg \exists i\left(w^{i} \models \neg \psi \wedge \forall j<i, w^{j} \models \neg \varphi\right) \\
& \Longleftrightarrow \forall i\left(\neg w^{i} \models \neg \psi\right) \vee \neg\left(\forall j<i, w^{j} \not \models \varphi\right) \\
& \Longleftrightarrow \forall i \in \mathbb{N}\left(\forall j<i, w^{j} \not \models \varphi\right) \rightarrow w^{i} \models \psi \\
& -w \models \neg(\varphi \mathcal{U} \psi) \Longleftrightarrow w \models \neg \varphi \mathbf{R} \neg \psi \\
& -w \models \varphi \mathcal{U} \psi \quad \Longleftrightarrow \exists i\left(w^{i} \models \psi \wedge \forall j<i, w^{j} \models \varphi\right) \\
& \Longleftrightarrow(i=0 \wedge w \models \psi) \vee\left(\exists i>0,\left\{\begin{array}{l}
w^{i} \models \psi \wedge\left(j=0 \wedge w^{0} \models \varphi\right) \\
\wedge \forall 0<j<i, w^{j} \models \varphi
\end{array}\right)\right. \\
& \left.\Longleftrightarrow w \models \psi \vee \exists i^{\prime} w^{i^{\prime}+1} \models \psi \wedge w \models \varphi \wedge \forall j^{\prime}<i^{\prime}, w^{j^{\prime}+1} \models \varphi\right) \\
& \Longleftrightarrow w \models \psi \vee(\varphi \wedge \mathbf{X}(\varphi \mathcal{U} \psi)) \\
& -w \models \varphi \mathbf{R} \psi \quad \Longleftrightarrow w \models \neg(\neg \varphi \mathcal{U} \neg \psi) \\
& \Longleftrightarrow \neg \exists i\left(w^{i} \not \vDash \psi\right) \wedge\left(\forall j<i, w^{j} \not \vDash \varphi\right) \\
& \Longleftrightarrow \forall i\left(w^{i} \models \psi \vee \exists j<i, w^{j} \models \varphi\right) \\
& \Longleftrightarrow \forall i\left(w^{i} \not \models \psi \rightarrow \exists j<i, w^{j} \models \varphi\right)
\end{aligned}
$$

We need to remark that if $\forall i w^{i} \models \psi$, then $w \models \varphi \mathbf{R} \psi$. If, on the contrary, ψ does not always hold, we can find a smallest position k, such that ψ doesn't hold: that is $\exists k \forall j<k, w^{j} \models \psi \wedge w^{k} \not \models \psi . \varphi \mathbf{R} \psi$ therefore implies (by instanciating the universal quantification with k), that $\exists j<k, w^{j} \models \varphi$. Thus we have that ($w \not \vDash \mathbf{G} \psi$ and $w \models \varphi \mathbf{R} \psi$) implies $\exists j<k, w \models \varphi$, and as $\forall i<k, w \models \psi$, we deduce that it implies $w \models \psi \mathcal{U}(\varphi \wedge \psi)$. Therefore ($w \models \varphi \mathbf{R} \psi$ and $w \models \mathbf{G} \psi$) or ($w \models \varphi \mathbf{R} \psi$ and $w \not \models \mathbf{G} \psi$) implies either $w \models \mathbf{G} \psi$ or $w \models \psi \mathcal{U}(\varphi \wedge \psi)$ thus $w \models \varphi \mathbf{R} \psi \Longrightarrow w \models \mathbf{G} \psi \vee(\psi \mathcal{U}(\varphi \wedge \psi))$.

To show the converse implication, assume that $w \models \mathbf{G} \psi \vee(\psi \mathcal{U}(\varphi \wedge \psi))$. Let us show that for any $i, w^{i} \not \models \psi \Longrightarrow \exists j<i, w^{j} \models \varphi$. If i is such that $w^{i} \not \models \psi$, then by hypothesis $w \models \psi \mathcal{U}(\varphi \wedge \psi)$ so this i is necessarily greater than the position where $\varphi \wedge \psi$ hold, hence there is a position before i where φ holds.

Exercise 2.5: Solution

Any trace of K_{1} is also a trace K_{2}, therefore $K_{2} \models \varphi$ is equivalent to $\forall w \in K_{2}, w \models \varphi$. As $\forall w \in K_{1}, w \in K_{2}$, we have $\forall w \in K_{1}, w \models \varphi$, hence $K_{2} \models \varphi \Longrightarrow K_{1} \models \varphi$.

