Technische Universitat Miinchen Summer Semester 2015
I7
J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth June 2015

Solution of Exercise sheet 2

Prequels

We give a few important logical equivalences: let &, (and v some logical statements,

E—=(— ¢V((definition of implication)
ENC — (=¢V () (de Morgan’s law)
vV(EN() <<= WVEAV] (distributivity of A over V)
Va & — —dz (=) (duality between ¥ and 3)
Ve>k ¢ <= Ve((z>k)—¢) a widely used notation
Vo >k & < dxr>k £ not hard to prove
dr§ <= dx
§ —= (— vANE <= v A(we can rewrite within formulas
—§ = ¢

This list is not exhaustive, especially concerning the V and A operators, which are also
associative, commutative, idempotent; false is neutral for V and is the zero of A and
conversely for true.

Structural Induction over LTL Formulas

For a formal and accurate definition, it is well-founded induction over the set of formulas
using the well-order “is a subformula” The boring details may be inspected in the Wikipedia
article on well-founded induction.

Assume we want to show some property P holds for any LTL formula, for that we need
to show:

e Property P holds for atomic LTL formulas,

e The operators preserve the property. For any LTL formulas ¢ and 1 such that ¢ and
© satisfy the property P we have to show that:

— ¢ U satisfies P
— @ V9 satisfies P
X satisfies P
— - satisfies P

Intuitively this ensures any formula will satisfy property P, as as formula can be seen as a
tree whose leaves satify property P and each node preserves the property P.

This technique can be generalized to other type of inductively defined formulas. Remark
that it is crucial that property P is the same everywhere in the prove.

1

(tiny) LTL cheat sheet

p
—p
oV
X
pUY
Gy
Fo
R
FGy
GFy

UV (e AX(p UY))
—|(—|— U _‘Q0>
(e U)
GFGyp

FGFy

G(p — Fq)

Exercise 2.1: Solution

p € AP and p € w(0)

w @

w g or w1y

w' =

Ji(w' = AVE < i, wk = @)
Vn w™ | ¢

dnw" E ¢

Vi (Vi <1, w! fEp) = w' E
JdVn >t w e
Vidn >t w" =@

p holds now

¢ doesn’t hold

needs not be always the same
next ¢

1 may hold right away

© is always true

© is true (at least) once

1 may get false only after ¢ does
¢ will always hold

© holds infinitely often

Each p is eventually followed by a ¢
G(p = X(G—q)) After the first p, ¢ no longer occurs

¢ =GFqand v = G((¢ AT AFr) = ((p—= (-rU(sN—r))) UT))

word wkEe wgkEY
{pHpHP} no yes
{aHaHa}” yes yes
{sHs}H{s}¥ no yes
{e,7Ha,rHa,r}* yes yes
(U005 no yes
{rHrHaHad {rHa})” yes yes
{rHsHrHaH{a {rHaHa})? yes yes
{rHrHaH{sHa {rHrHa})” yes yes
Tpraqq(rrrqqq)” yes yes
Tpraqqs(rrrqqq)” yes yes
r7pqqqs(rrrqqq)” yes yes
rrpqqsq(rrrqqq)” yes yes
rrpaqqrsr(qqrr)® yes yes
999799995999~ yes yes
qqqrTpaPaPqqsqqre” yes yes

Exercise 2.2: Solution

1. If a program P = Fg then any trace of that program will give a result. For instance
{g}0¢ is an example of a valid trace and (* is not.

2. p — G(—r A —s) would only ensure the desired property if the program first gives
a result, for instance {s}{r}{g}({s}{r})“ would satisfy this LTL formula. Thus the
property is G(p — G(—r A —s)), or depending on the semantics of the english word

6.

“after”, only G(p — XG(—r A —s)) may be considered correct. Typically {g, s, r}0*
is only satisfying the second formula.

GF's indicates that s holds infinitely often ({s}* satsifies this property, {s}({e}*)
does not.

This time we need the next operator, (otherwise, we would have ¢ — G—g, which
implies g — —g, thus —g), Fg A G(g = XG—g).

It is not possible to express in LTL that property if we consider that every send can
only match one receive: that language would not be regular. However if we consider
that a send responds to every preceding receive, then the property is equivalent to
every receive there will later be a send. G(r — XFs).

The most succint way to write this property is (=s A =g) Wr.

Exercise 2.3: Solution

Remark that () satisfies none of the following formulas, while {p, ¢, r, s} satisfies all
of them.

1.

2.

pU(qV Gq): since Gg = ¢, this formula is equivalent to p U gq.
G(q — Fs) is s responds to g.

G((gN—-r ANFr)— (-pUT)) is p is false between ¢ and r.

. p U Ggq, this formula state that the word consists of a finite prefix of p (other predi-

cates may hold) followed by an infinite suffix of ¢ (other predicates may hold).

. p UFq: this formula is equivalent to Fq. (eventually ¢ will hold).

G(p U Gq): this formula is equivalent to p U Ggq, indeed if that formula holds at the
first position, it holds at every position.

(Gp) U Gq: this formula is equivalent to p U G(p A q).

Exercise 2.4: Solution

— w | Gy w = (T U—yp)

—(Fi(w' = AVE < i, wh = T))

Vil |V aVk <i,wt T

Vi e Nuw' | ¢

(= U 1) .

—~Ji(w' |~ AV <, w! | op)

Vi(—w' b= =) V (V) < i, w! [~)

Vi e N (Vj <i, w f£g) > w =9

w = 2R =y |

Ji(w' = AVj < i, w = p)

o . w EPA([G=0A0" = @)
(@_0/\w|:z/;)\/<32>0,{/\v0<j<2.7wj):¢ >
wEYVI Wt EYAw E @AY <, wt =)
wEYV(eAX(eUy))

w | (= U—p) '

=3 (w') A (V) < i, w!)

Vi (w' =V 3j<i, w =)

Vi (w' e — 35 <4, w =)

We need to remark that if Vi w® = 1, then w | @R. If, on the contrary, ¢ does
not always hold, we can find a smallest position k, such that i doesn’t hold: that is
Jk Vj < k, v | ¥ AwF . @R therefore implies (by instanciating the universal
quantification with k), that 3j < k, w’ = . Thus we have that (w £ G¢ and w = o R)
implies 3j < k, w | ¢, and as Vi < k, w | 1, we deduce that it implies w = ¥ U(p AY).
Therefore (w = ¢ RY and w = Gv) or (w = ¢ Ry and w & Ge)) implies either w = G
or w v Ul AY) thus w = 9RO — w = Go v (1 Ulp A).

To show the converse implication, assume that w = Gy V (¢ U(p A1)). Let us show
that for any 4, w' £ ¢ = 3Jj <1, w’ |= . If i is such that w’ j~ 1, then by hypothesis
w =1 U(p A1) so this i is necessarily greater than the position where ¢ A 1) hold, hence
there is a position before i where ¢ holds.

- wEeRY

- wE(pUY)
- wEeUY

- wEeRY

rrrrrr v eeeearee ey

Exercise 2.5: Solution

Any trace of K is also a trace Ks, therefore Ky = ¢ is equivalent to Yw € Ky, w = ¢.
AsYw € Ky, w € Ky, we have Vw € Ky, w |= ¢, hence Ky = = K; | ¢.

