Technische Universität München

Summer Semester 2014

J. Esparza / A. Durand-Gasselin

I7

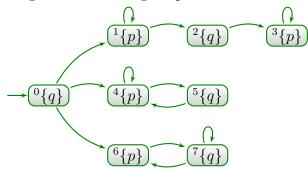
20.06.2014

Model Checking – Exercise sheet 6

Exercise 6.1: What is syntactic sugar ?

CTL operators are defined as QT where Q is A or E and T is any LTL modality $(\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathcal{U}, \mathcal{W}, \mathcal{R})$. So many operators means a lot of cases to handle for inductively proving results on CTL.

- 1. Show that any operator can be written by means of the three operators $E\mathbf{X}, E\mathbf{G}, E\mathcal{U}$ (and also with the boolean connectives).
- 2. Informally, why is $E\mathbf{G}$ necessary?


Exercise 6.2: Composition of unary operators

We are interested in the following operators: EF, EG, AF, AG.

- 1. What can we say about EFEF, EGEG, AFAF, AGAG?
- 2. What about AFEF and EFAF?

Exercise 6.3: Fixpoint computations

We give the following Kripke structure:

- 1. Compute $E\mathbf{G}q$ and $E\mathbf{F}q$.
- 2. Compute AGAFp and AFAGp.
- 3. Does $K \models \mathbf{FG}p$? Does $K \models \mathbf{GF}p$?