Technische Universität München 17 J. Esparza / A. Durand-Gasselin

6.06.2014

Model Checking – Exercise sheet 5.1

Exercise 5.1: $a \mathcal{U}(b \mathcal{U} c)$ and $(a \mathcal{U} b) \mathcal{U} c$

Let $\varphi_1 = (p \wedge q) \mathcal{U}((p \wedge \neg q) \mathcal{U}(\neg p \wedge q))$ and $\varphi_2 = ((p \wedge q) \mathcal{U}(p \wedge \neg q)) \mathcal{U}(\neg p \wedge q)$ two LTL formulas over the set of propositional variables $\{p, q\}$.

- 1. Are these LTL formulas equivalent ?
- 2. We denote $a = \{p, q\}, b = \{p\}, c = \{q\}, d = \emptyset$. Write ω -regular expression E_1 and E_2 that describes infinite words over alphabet $\{a, b, c\}$ that validate φ_1 and φ_2 .
- 3. Give a Büchi automaton accepting each of those languages.
- 4. Given a Büchi automaton $\mathcal{A} = (Q, Q_0, F, \Delta)$ over $\Sigma = \{a, b, c\}$. We denote $L_q^{\mathcal{A}}$ the language of infinite words accepted starting from state q in the automaton \mathcal{A} . Which of the following statements hold:
 - If $L_{q_1} \subseteq L_{q_2}$, $(q_3, \alpha, q_1) \in \Delta$ and $(q_3, \alpha, q_2) \in \Delta$, then removing (q_3, α, q_1) does not modify the language accepted by \mathcal{A} .
 - If $L_{q_1} \subseteq L_{q_2}$, $(q_3, \alpha, q_1) \in \Delta$ and $(q_3, \alpha, q_2) \in \Delta$, and q_1 is not an accepting state, then removing (q_3, α, q_2) does not modify the language accepted by \mathcal{A} .
 - There exists a set of transitions of \mathcal{A} (i.e. a subset of Δ), such that a word w is in $L(\mathcal{A})$ iff there exists a run of w in \mathcal{A} that fires infinitely often one of the transitions in that set.
 - If a state q has no successor, then it can be removed, and all transitions mapping to that state can also be removed. This process can be iterated without modifying the language.
- 5. We will now apply the LTL to Büchi translation for those formulas. In order to obtain more concise automata, we suppress $(\neg p \land \neg q)$ transitions (we disallow d). Describe the set of states.
- 6. Assume φ_1 is present in one state: what is required for this state to have an outgoing transition ?

- 7. Assume φ_1 is not present in one state (i.e. $\neg \varphi_1$) is present in that state: what is required for this state to have an outgoing transition ?
- 8. Same questions for φ_2 and other non-trivial subformulas of φ_1 and φ_2 .
- 9. Which states in these automata do not have any outgoing transition ?
- 10. Build the automata over Σ , translation of φ_1 and φ_2 .

Exercise 5.2: $\mathbf{G}(a \to ((a \lor b) \ \mathcal{U} \ c))$

Using the previous exercise notation, we consider the LTL formula $\psi = \mathbf{G}(a \rightarrow ((a \lor b) \ \mathcal{U} \ c)).$

- 1. Which are the subformulas of ψ ?
- 2. Prove the following claim: states which do not imply formula $a \to ((a \lor b) \ \mathcal{U} \ c))$ can be removed.
- 3. Can we perform a similar trick when translating an \mathbf{F} formula?
- 4. Build the Büchi automaton accepting the language described by ψ .