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1 Propositional logic

Syntax We rely on a set of atomic propositions, AP , containing atoms like p, q. A propositional
logic formula φ ∈ Formula is then defined by the following grammar given in BNF form:

φ ::= p | φ ∧ φ | ¬φ

We will use additional symbols in logical formulas, but they can be defined in terms of the con-
junction and negation operators above.

p ∨ q = ¬(¬p ∧ ¬q)
p→ q = ¬p ∨ q = ¬(p ∧ ¬q)
p↔ q = (p→ q) ∧ (q → p)∧
i∈{1...n}

pi = p1 ∧ · · · ∧ pn∨
i∈{1...n}

pi = p1 ∨ · · · ∨ pn

false = p ∧ ¬p
true = ¬false

Semantics We assign a truth value to each propositional logic formula. The set of truth values
contains two elements, T and F . A model M is a function that takes as argument an atomic
proposition from AP and it returns a value from the set {T, F}. Then we define a satisfaction
relation M |= φ (read “M satisfies φ”) as follows.

• M |= p iff M(p) = T

• M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2

• M |= ¬φ iff not M |= φ

Note that logic, e.g., the satisfaction relation, is defined in terms of meta-logic, e.g., natural
language words like “and”, “not”.

Decision problem Let us refer to a function models that given a propositional logic formula
returns all its satisfying assignments. Then, we say a formula φ is valid if it is valid under every
assignment. A formula φ is satisfiable if models(φ) 6= ∅. Finally, a formula φ is unsatisfiable if
models(φ) = ∅.

The decision problem for propositional logic: given a propositional formula φ, is φ satisfiable?
This is also called the boolean satisfiability problem or simply a SAT problem. A decision procedure
for propositional logic is an algorithm that always terminates with a correct answer to the decision
problem for propositional logic. Many SAT solvers are based on the Davis-Putnam-Loveland-
Logemann (DPLL) framework. (Details of this family of decision procedures are beyond the scope
of this report.)
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2 Linear arithmetic

Syntax In the following, we will use V to denote a set of variables occurring in a formula, with
v ∈ V . We use q to denote a rational number, q ∈ Q. Then the grammar for linear arithmetic
formulas consists of linear arithmetic terms and formulas:

t ::= q ∗ v | t+ t

φLI ::= t ≤ q | t < q | φLI ∧ φLI | ¬φLI | ∃v : φLI

Similar to the previous grammar for propositional logic formulas, the grammar for linear arithmetic
formulas is kept concise without loss of expressivity. For example, the formula 3 ≤ 5 can be
expressed using the grammar above as 0 ∗ v ≤ 2, while x = y can be represented as a conjunction
of two inequalities, i.e., x ≤ y ∧ y ≤ x.

Semantics We again assign a truth value to each linear arithmetic formula. For this, we use a
model M that is a function that takes as argument a variable from V and returns a value from Q.
We define a function to evaluate an arithmetic term, eval : TermLI → Q.

• eval(q ∗ v,M) = q ∗M(v)

• eval(t1 + t2,M) = eval(t1,M) + eval(t2,M)

We rely on a projection function project(φLI , v) to handle quantifier elimination, one possible real-
ization being the Fourier-Motzkin elimination algorithm. As an example of the use of projection,
consider project(2 ∗ v1 − 3 ∗ v2 ≤ 5 ∧ v2 − 6 ∗ v3 ≤ 0, v2) = (2 ∗ v1 − 18 ∗ v3 ≤ 5). Based on the
evaluation and projection functions, we define a satisfaction relation for linear arithmetic formulas,
M |=LI φLI :

• M |=LI t ≤ q iff eval(t,M) ≤ q

• M |=LI t < q iff eval(t,M) < q

• M |=LI φ1 ∧ φ2 iff M |=LI φ1 and M |=LI φ2

• M |=LI ¬φ iff not M |=LI φ

• M |=LI ∃v : φ iff M |=LI project(φ, v)

Note that the symbol ≤ that occurs in the satisfaction relation is what we define (“the logic”) in
terms of the symbol ≤ from eval(t,M) ≤ q that comes from math (“the meta-logic”).

Example 1. Let us consider the formula φ = (2 ∗ v1− 3 ∗ v2 ≤ 5) and the assignment M(v1) = 2,
M(v2) = 3. We obtain that M satisfies φ, M |=LI φ, since eval(2 ∗ v1 − 3 ∗ v2,M) = −5 and
−5 ≤ 5.

3 Clauses

Syntax So far, we have used a number of functions and predicates with a definite meaning
corresponding to linear arithmetic. We call the symbols “*” and “+” functions, and “≤” and
“<” predicates. Apart from these interpreted predicates, now we consider a set of uninterpreted
predicate symbols (or query symbols) Q. Predicates may be used either in infix of prefix form,
e.g., v1 ≤ v2 or ≤ (v1, v2).

Based on the predicate symbols p ∈ Q, we define a language of clauses:

d ::= p(v, . . . , v) | φLI | d ∨ d | ¬p(v, . . . , v)

cl ::= ∀v, . . . , v : d

(1)
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Note that the negation is used here in a more restrictive way than in the definition of linear
arithmetic formulas φLI . In other words, a clause is a fancy name for a disjunction. One example
of a clause follows, ¬p(v1) ∨ v1 ≤ v2 ∨ q(v2) ∨ r(v1), where p, q and r are uninterpreted predicate
symbols.

We introduce an equivalent grammar that avoids the use of the negation operator.

body ::= p(v, . . . , v) | φLI | body ∧ body

head ::= p(v, . . . , v) | φLI | head ∨ head

cl ::= ∀v, . . . , v : body → head

(2)

For sake of brevity, we will abuse the notation and write p(v) as a short-hand for p(v1, . . . , vn)
even when the predicate p does not have arity 1. In such a case, v is used to denote the tuple of
variables (v1, . . . , vn).

We define a variable substitution function on formulas from the background theory, e.g., LI,

(q1 ∗ v1 + · · ·+ qn ∗ vn ≤ q)[z/w] = q1 ∗ v′1 + · · ·+ qn ∗ v′n ,

where v′i = z if vi = w and v′i = vi if vi 6= w.

Semantics We use a model M that is a function that takes uninterpreted predicates from P and
returns a linear arithmetic formula φLI . We define a satisfaction relation for clauses, M |=cl cl .
The satisfaction relation makes use of the substitution function and the quantifier elimination
procedure from the background theory.

• M |=cl ∀v, v1, . . . , vm, w : φ(v)∧ p1(v1)∧ · · · ∧ pn(vn)→ φ(w)∨ pn+1(vn+1)∨ · · · ∨ pm(vm) iff
∀v, v1, . . . , vm, w : φ(v)∧

∧
i∈{1,...,n}M(pi(ai))[vi/ai]→ φ(w)∨

∨
i∈{n+1,...,m}M(pi(ai))[vi/ai]

Example 2. Let us consider the clause cl = ∀i1, i2 : (i1 = 0 ∧ h(i1) ∧ i2 = i1 + 1 → h(i2)) with
one uninterpreted predicate symbol h of arity 1. The assignment M(h(a)) = (a ≥ 0) interprets
this predicate symbol. We obtain that M satisfies cl since the following formula is true.

∀i1, i2 : i1 = 0 ∧ i2 = i1 + 1 ∧ i1 ≥ 0→ i2 ≥ 0

4 Horn clauses

Syntax As an alternative to the previous two grammars for defining clauses, (1) and (2), we
introduce a third definition that is more amenable to automated verification. The definition is
based on a restricted form of clauses named Horn clauses. A Horn clause is a clause with a head
that is either a formula from the background theory or a single uninterpreted predicate. The body
and the clause definition are identical to those from the grammar (2). We obtain the following
definition.

body ::= p(v, . . . , v) | φLI | body ∧ body

head ::= p(v, . . . , v) | φLI
cl ::= ∀v, . . . , v : body → head

cls ::= cl ∧ cls | cl

(3)

Since we will deal with clauses with many terms, a monolithic formula cls is not ideal. We will
use a set representation for clauses instead of presenting the conjunction of Horn clauses as a
monolithic formula. This is illustrated by the next example.

Example 3. Consider the following monolithic formula represented in the language defined by
the grammar (3).
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φ = ∀i1, i2, i3, i4 : (i1 = 0→ p(i1)) ∧ (p(i2) ∧ i3 = i2 + 1→ p(i3)) ∧ (p(i4)→ q(i4))

The formula φ refers to two uninterpreted predicate symbols of arity one p and q. An equivalent
representation of φ as a set of Horn clauses follows.

HC 1 = { i = 0→ p(i),

p(i) ∧ i′ = i+ 1→ p(i′),

p(i)→ q(i)}

Furthermore, each element of the set HC 1 is implicitly universally quantified over all the free
variables from the respective Horn clause.

Semantics The satisfaction relation for a Horn clause is the same as the relation |=cl for a
general clause. A conjunction of Horn clauses is called a Horn formula and we use the same
symbol |=cl for its satisfaction relation.

• M |=cl cls iff M |=cl cl for all clauses cl from the set cls

Observation Checking if the relation |=cl holds between a given M and a given HC is similar
to making a proof by induction when the induction hypothesis is given. Consider the same clauses
HC 1 where the uninterpreted predicate is renamed to hyp.

{n = 0→ hyp(n), hyp(n) ∧ n′ = n+ 1→ hyp(n′), hyp(n)→ φtheorem(n)}

Example 4. Consider an interpreted predicate edge(x, x′) = (x ≥ 0 ∧ x′ = x − 1) and an
uninterpreted predicate tc(x, x′) that satisfy the following Horn clauses.

HC 2 = { edge(v, w)→ tc(v, w),

tc(v, w) ∧ edge(w, z)→ tc(v, z)}

The assignment M(tc(v, w)) = (v ≥ 0 ∧ w < v) satisfies the clauses given above: M |=cl HC 2. In
fact, the interpretation of the tc is the transitive closure of the edge relation.

5 Inference algorithms for Horn clauses

The goal of this section is to present algorithms that, given a set of Horn clauses HC , infer an
assignment M such that M |=cl HC .

We recall the definition of a set of Horn clauses:

body ::= p(v, . . . , v) | φLI | body ∧ body

head ::= p(v, . . . , v) | φLI
cl ::= body → head

HC ::= {cl , . . . , cl}

We distinguish three classes of Horn clauses:

• Inference clauses are clauses with a head that is a single uninterpreted predicate.

φ0(v0) ∧
∧

i∈{0...n}

pi(vi)→ p(v)
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• Property clauses are clauses with a head that is a formula from the background theory.

φ0(v0) ∧
∧

i∈{1...n}

pi(vi)→ φ(v)

• Initial clauses are inference clauses without uninterpreted predicates in their body.

φ0(v0)→ p(v)

For clarity of presentation, the following algorithms assume that HC contains only inference
clauses (no property clauses).

Two views of a Horn clause Note the following logical equivalence between the “universal
view of a Horn clause”,

∀a, b : p(a, b)→ q(a)

and the “existential view of a Horn clause”,

∀a : (∃b : p(a, b))→ q(a)

The above equivalence suggests that given some interpretation for the predicate p(a, b), the
interpretation for q(a) should contain at least ∃b : p(a, b).

Bounded inference, symbolic reasoning The first algorithm that we present unfolds the
Horn clauses from HC only up to a constant number of times k. The algorithm consists of the
following three steps.

s1) Start with the false formula for each uninterpreted predicate. For a predicate pi(vi), we
denote its zero-th candidate as p0

i (vi).

s2) Based on the j-th candidates for the predicates that appear in the body of a clause cl ,

cl = φ0(v0) ∧
∧

i∈{1...n}

pi(vi)→ p(v) ,

compute the (j+1)-th candidate for the predicate from the head of the clause as pj+1(v) =
pj(v) ∨

∨
cl∈HC

p∆(v), where

p∆(v) = ∃((v0 ∪ · · · ∪ vn)\v : φ0(v0) ∧
∧
pji (vi))

s3) Stop when we reach the k-th candidates for the uninterpreted predicates. The last candi-
dates for the queries, i.e., the k-th candidates, represent the result of the bounded inference
algorithm.

Example 5.

HC 3 = { x = 0 ∧ y = n→ p(x, y, n),

p(x, y, n) ∧ x′ = x+ 1 ∧ y′ = y − 1 ∧ y ≥ 0 ∧ n′ = n→ p(x′, y′, n′)}

We compute the bounded inference solution for k = 2 as follows.

• We start with p0(x, y, n) = false.

• We compute the first candidate as a disjunction of the two formulas: p11(x, y, n) = ∃∅ : x =
0 ∧ y = n and p12(x, y, n) = false. We obtain p1(x, y, n) = (x = 0 ∧ y = n).

• We compute the second candidate: p2(x′, y′, n′) = ∃x, y, n : x = 0∧ y = n∧x′ = x+ 1∧ y′ =
y − 1 ∧ y ≥ 0 ∧ n′ = n. We obtain p2(x, y, n) = (x = 1 ∧ n ≥ 0 ∧ y = n− 1) and stop here,
since we have reached the candidate k = 2.
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Unbounded inference, symbolic reasoning This algorithms uses the steps s1) and s2) from
the previous bounded case and a different stopping condition.

s3’) Stop the inference for pi(vi), when we reach the j-th candidate such that pj+1
i (vi) = pji (vi).

If the algorithm terminates, then the solution for pi(vi) is the last computed candidate, i.e.,
pj+1
i (vi).

This algorithm is not guaranteed to terminate.

Theorem 1 (Most precise solution). Disjunction over all pk(v) gives the most precise solution or
the least solution for p(v) when considering all unfoldings (of arbitrary depth).

Exercise 1. Let us consider the following sets of Horn clauses.

HC 4 = { x ≥ 0→ p(x),

p(x) ∧ x′ = x+ 1→ p(x′)}

HC 5 = { x = 0→ p(x),

p(x) ∧ x′ = x+ 1→ p(x′)}

Does the unbounded inference algorithm terminate for either HC 4 or HC 5?

Abstract inference, symbolic reasoning The distinguishing feature of this algorithm is that
it extrapolates a candidate using an abstraction function. An abstraction function should have
two properties:

• ∀φ(v) : ∀v : φ(v)→ α(φ(v))

• ∀φ(v) : ∀ψ(v) : (φ(v)→ ψ(v))→ α(φ(v))→ α(ψ(v)) (monotonicity condition)

We use an abstraction function defined using a set of interpreted predicates:

αP (φ(v)) =
∧
{p(v) | p(v) ∈ P and ∀v : φ(v)→ p(v)}

Example 6. For the set of predicates P = {s = 0, i = n} and the formula φ(pc, s, i) = (pc =
1 ∧ s = 0 ∧ i = n), we obtain

αP (φ(pc, s, i)) = αP (pc = 1 ∧ s = 0 ∧ i = n) =
∧
{s = 0, i = n} = (s = 0 ∧ i = n)

This abstract inference algorithm is some times called predicate abstraction, since the abstrac-
tion function is defined using predicates. The abstract inference algorithm consists of the steps
s1) and s3’) from the previous algorithm and a different second step.

s2’) Based on the j-th candidates for the predicates that appear in the body of a clause cl ,

cl = φ0(v0) ∧
∧

i∈{1...n}

pi(vi)→ p(v) ,

compute the (j+1)-th candidate for the predicate from the head of the clause as pj+1(v) =
pj(v) ∨

∨
cl∈HC

p∆(v), where

p∆(v) = αP (∃((v0 ∪ · · · ∪ vn)\v : φ0(v0) ∧
∧
pji (vi)))

Given HC , the solution for pi(vi) is the last computed candidate. The abstract inference
algorithm is guaranteed to terminate, but may not compute the most precise solution for the
given set of Horn clauses.

Exercise 2. Apply the abstract inference algorithm for P = {x ≥ 0, x ≥ 1} and the sets of Horn
clauses given in the previous exercise, HC 4 and HC 5.
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Checking property clauses Once the inference algorithms are terminated (either unbounded
inference or abstract inference), we can check if the property clauses are satisfied as follows. For
each property clause,

cl = φ0(v0) ∧
∧
pi(vi)→ φ(v) ,

we use the solutions computed so far for pi(vi) and substitute them in cl . If all property clauses
are valid, then the solutions satisfy all the clauses from HC and we return the solution for HC .

6 Programs

In this section, we will define programs as transition systems, then characterize some interesting
program correctness properties.

Syntax A program Prog = (V, pc, φinit ,R, φerr ) consists of

• V - a tuple of program variables.

• pc - a special program variable representing the program counter.

• φinit - an initiation condition given by a formula over V .

• R - a set of “single-statement” transition relations, each of them given by a formula over V
and V ′.

• φerr - an error condition given by a formula over V .

The previous representation for a program is called a transition system and it is often used as
a model to describe the behavior of software or systems. Let ρR denote the program transition
relation, i.e., the union of “single-statement” transition relations. We have ρR =

∨
ρi∈R

ρi.

Example 7. We show the code for an example program and its transition system representation.

main(int x, int y, int z) {

1: assume(y>=z);

2: while (x<y) {

3: x++;

4: }

5: assert(x>=z);

6: }

For our example, V = (x, y, z, pc), φinit(V ) = (pc = 1), R = {ρ1, ρ2, ρ3, ρ4, ρ5}, φerr (V ) =
(pc = −1) with the following transition relations:

ρ1(V, V ′) = move(1, 2) ∧ y ≥ z ∧ skip(x, y, z)

ρ2(V, V ′) = move(2, 2) ∧ x < y ∧ x′ = x+ 1 ∧ skip(y, z)

ρ3(V, V ′) = move(2, 5) ∧ x ≥ y ∧ skip(x, y, z)

ρ4(V, V ′) = move(5, 6) ∧ x ≥ z ∧ skip(x, y, z)

ρ5(V, V ′) = move(5,−1) ∧ x < z ∧ skip(x, y, z)

In the previous relations, we used move and skip as abbreviations. We have move(i, j) = (pc =
i ∧ pc = j) and skip(x, y, z) = (x′ = x ∧ y′ = y ∧ z′ = z).
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Semantics Each program variable is assigned a domain of values. A program state is a function
that assigns to each program variable a value from its domain. Therefore, we can reuse the
satisfaction relation symbol defined previously for an assignmentM and a linear arithmetic formula
in the context of “state s satisfies formula φ”. A formula with free variables from V and V ′

represents a binary relation between pairs of states, where the first component of each pair assigns
values to V and the second component assigns values to V ′. In the following, we could restrict our
attention to program variables assigned rational values and use |=LI for the satisfaction relation
between (pairs of) states and formulas. For sake of generality, we assume a satisfaction relation
defined over a first-order theory and we overload the symbol |= to denote such a relation.

A computation is a sequence of program states s1, s2, . . . such that 1) s1 is an initial state, i.e.,
s1 |= φinit and 2) each pair of consecutive states si and si+1 from the sequence is connected by a
transition relation, i.e., (si, si+1) |= ρ with ρ ∈ R. A state is reachable if it occurs in a program
computation. Let φreach denote the set of reachable program states. A computation segment is
a sequence of program states si, . . . such that si is a reachable state and each pair of consecutive
states sj and sj+1 in the sequence is connected by a transition relation, i.e., (sj , sj+1) |= ρ with
ρ ∈ R. A computation is finite if some state element sj from the sequence does not have any
successors, i.e., there does not exist a state s such that (sj , s) |= ρ for any ρ ∈ R.

Example 8. A computation of the program from Example 7 is the following sequence of program
states, where we use a tuple of values to represent a state.

(1, 3, 2, 1), (1, 3, 2, 2), (2, 3, 2, 2), (3, 3, 2, 2), (3, 3, 2, 3), (3, 3, 2, 5), (3, 3, 2, 6)

The tuple (1,3,2,1) corresponds to the program state where x, y, z and pc are assigned the values
1, 3, 2 and respectively 1.

Correctness properties We consider two properties of programs, safety and termination.

Definition 1. A program is safe if no error state is reachable.

To prove program safety, it suffices to find a symbolic description for the reachable states R(V )
such that the following three conditions hold.

∀s : (s |= φinit(V ))→ (s |= R(V ))

∀s, s′ : (s |= R(V )) ∧ ((s, s′) |= ρi(V, V
′))→ (s′ |= R(V ′)) for ρi ∈ R

∀s : (s |= R(V ))→ (s 6|= φerr (V )

Given that a program state is a function defined over program variables, we obtain equivalent
conditions for program safety universally quantified over program variables.

Theorem 2 (Soundness of safety checking). A program is safe if there exists a solution for the
query R(V ) that satisfies the following conditions.

∀V : φinit(V )→ R(V )

∀V, V ′ : R(V ) ∧ ρR(V, V ′)→ R(V ′)

∀V : R(V ) ∧ φerr (V )→ false

(4)

Proof. Omitted.

Theorem 3 (Completeness of safety checking). If a program is safe then there exists a solution
for the query R(V ) that satisfies the following conditions.

∀V : φinit(V )→ R(V )

∀V, V ′ : R(V ) ∧ ρR(V, V ′)→ R(V ′)

∀V : R(V ) ∧ φerr (V )→ false
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Proof. Omitted.

A solution that satisfies the conditions from the safety proof rule is called an inductive state
invariant of the program P .

Example 9. For the program given in Example 7, we apply an inference algorithm to compute a
solution for R(V ) that satisfies the first two clauses from the safety proof rule (4). For this example,
we use the unbounded inference algorithm and obtain the following four candidate formulas.

R1(V ) = (pc = 1)

R2(V ) = (pc = 1) ∨ (pc = 2 ∧ y ≥ z)
R3(V ) = (pc = 1) ∨ (pc = 2 ∧ y ≥ z) ∨ (pc = 5 ∧ y ≥ z ∧ x ≥ y)

R4(V ) = (pc = 1) ∨ (pc = 2 ∧ y ≥ z) ∨ (pc = 5 ∧ y ≥ z ∧ x ≥ y) ∨ (pc = 6 ∧ y ≥ z ∧ x ≥ y)

At the next step, the algorithm computes a formula R5(V ) that is equivalent to R4(V ) and the
inference process stops here. We next check the property clause, the third clause from the proof
rule (4). This clause is indeed satisfied, since R4(V )∧φerr (V ) is unsatisfiable. From the existence
of a solution for the query R(V ), we conclude that the given program is safe.

Definition 2. A program is terminating if all its computations are finite.

In the following, we use the notion of a well-founded relation, a relation that does not admit
infinite chains. The termination condition is equivalent to the fact that the transition relation of
P restricted to reachable states is well-founded. Here we give two proof rules that list conditions
necessary and sufficient for program termination.

The first termination proof rule relies on a ranking function, a function that maps program
states to an well-founded set, (W,≺). An example of a well-founded set is (N, <), while (N,≥)
is not a well-founded set. In other words, for termination we need to find a function that takes
as argument a program state and returns an expression over the program variables such that the
expression is provably decreasing throughout the states of a computation.

∀V : φinit(V )→ R(V )

∀V, V ′ : R(V ) ∧ ρR(V, V ′)→ R(V ′)

∀V, V ′ : R(V ) ∧ ρR(V, V ′)→ r(V ) � r(V ′)

(5)

Example 10. For the transition system given by V = (x, y), φinit(V ) = true and ρR(V, V ′) =
(x < y∧x′ = x+1∧y′ = y), there exist a well-founded set (N, <), a ranking function r(V ) = (y−x)
and a predicate R(V ) = true that satisfy the conditions from the proof rule (5).

In some cases, constructing the termination argument, i.e., the ranking function, for a com-
plex transition relation is difficult. A second proof rule alleviates this problem by relying on a
termination argument that is composed from smaller termination sub-arguments. A second proof
rule guarantees program termination provided there exist a query R(V ) (that stands for reachable
states) satisfying the first two conditions from equation (4) and a query T (V, V ′) (that stands for
reachable computation segments) that satisfies additional conditions.

∀V : φinit(V )→ R(V )

∀V, V ′ : R(V ) ∧ ρR(V, V ′)→ R(V ′)

∀V, V ′ : R(V ) ∧ ρR(V, V ′)→ T (V, V ′)

∀V, V ′, V ′′ : T (V, V ′) ∧ ρR(V ′, V ′′)→ T (V, V ′′)

∀V, V ′ : T (V, V ′)→WF 1(V, V ′) ∨ · · · ∨WFn(V, V ′)

(6)

Example 11. For the program given in Example 10, there exist R(V ) = true, T (V, V ′) = (x <
y ∧ x′ ≥ x+ 1 ∧ y′ = y) and WF (V, V ′) = y − x > 0 ∧ y′ − x′ < y − x that satisfy the conditions
from the proof rule (6).
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