Mini-test 1

Q1. Prove that:

1. $\exists x \forall y A(x, y) \rightarrow \forall y \exists x A(x, y)$
2. assume $\exists x \forall y A(x, y)$
3. $\forall y A(a, y)$ for some a by existential elimination
4. $A(a, b)$ for an arbitrary b by universal elimination
5. $\exists x A(x, b)$ by \exists introduction
6. $\forall y \exists x A(x, y)$ by \forall introduction
7. $\exists x \forall y A(x, y) \rightarrow \forall y \exists x A(x, y)$ by \rightarrow introduction from (1) and (5)
8. $\forall x(A(x) \rightarrow B(x)) \wedge \forall x(B(x) \rightarrow C(x)) \rightarrow \forall x(A(x) \rightarrow C(x))$
9. assume $\forall x(A(x) \rightarrow B(x)) \wedge \forall x(B(x) \rightarrow C(x))$
10. $\forall x(A(x) \rightarrow B(x))$ by \wedge elimination from (1)
11. $(A(x) \rightarrow B(x))$ by \forall elimination from (2)
12. $\forall x(B(x) \rightarrow C(x))$ by \wedge elimination from (1)
13. $(B(x) \rightarrow C(x))$ by \forall elimination from (4)
14. assume $A(x)$
15. $B(x)$ by \rightarrow elimination from (3)
16. $C(x)$ by \rightarrow elimination from (5)
17. $(A(x) \rightarrow C(x))$ by \rightarrow introduction from (6) and (8)
18. $\forall x(A(x) \rightarrow C(x))$ by \forall introduction
19. $\forall x(A(x) \rightarrow B(x)) \wedge \forall x(B(x) \rightarrow C(x)) \rightarrow \forall x(A(x) \rightarrow C(x))$ by \rightarrow introduction from (1) and (10)

Q2. Does the logical statement below hold? If so, give a proof. If not, give a counterexample for it.
$\forall x \exists y A(x, y) \rightarrow \exists y \forall x A(x, y)$
No, it doesn't. A counterexample can be $\{D=\{1,2\}, A(1,1), A(2,2)\}$

Q3. Does the satisfaction hold?

1. $\{D=\{1,2\}, p(1,2), q(1)\} \models \forall x \forall y p(x, y) \rightarrow q(x)$ [yes/no] YES
2. $\{D=\{1,2\}, p(1,2), q(1)\} \models \forall x p(x, x) \rightarrow q(x)$ [yes/no] YES
3. $\{D=\{1,2\}, p(1,1), q(2)\} \models \forall x \forall y p(x, y) \rightarrow q(x)$ [yes/no] NO

Mini-test 2

Given the program text

```
void main(int n) {
    int i, j;
L1: i = 0; j = n;
L2: while (i < n) { i++; j--; }
L3 assert(n == i+j);
L4: assert(j == 0);
}
```

Q1. Represent the program formally, i.e., as a tuple $P=\left(V, \varphi_{\text {init }}, \varphi_{\text {error }}, R\right)$.
$V=(p c, n, i, j)$
$\varphi_{\text {init }}(v)=\left(p c=L_{1}\right)$
$\varphi_{\text {err }}(v)=(n \neq i+j \vee j \neq 0)$
$R=\left(p c=L_{1} \wedge p c^{\prime}=L_{2} \wedge i^{\prime}=0 \wedge j^{\prime}=n\right) \vee$
$\left(p c=L_{2} \wedge p c^{\prime}=L_{2} \wedge i<n \wedge i^{\prime}=i+1 \wedge j^{\prime}=j+1\right) \vee$
$\left(p c=L_{2} \wedge p c^{\prime}=L_{3} \wedge i \geq n\right) \vee$
$\left(p c=L_{3} \wedge p c^{\prime}=L_{4} \wedge n=i+j\right) \vee$
$\left(p c=L_{3} \wedge p c^{\prime}=L_{e r r} \wedge n \neq I+j\right) \vee$
$\left(p c=L_{4} \wedge p c^{\prime}=L_{s a f e} \wedge j=0\right) \vee$
$\left(p c=L_{4} \wedge p c^{\prime}=L_{e r r} \wedge j \neq 0\right)$
Q2. Inductive invariant computation:
Q2.1. Give an inductive invariant that proves the first assertion. Give conditions that this inductive invariant has to satisfy.

$$
\varphi=\left(p c=L_{1} \vee n=i+j\right)
$$

The conditions that this inductive invariant has to satisfy are:
$\varphi_{\text {init }} \models \varphi$
$\operatorname{post}(\varphi, \rho R) \models \varphi$
Q2.2. Give an inductive invariant that proves the second assertion.

$$
\left(p c=L_{1} \vee\left(p c=L_{2} \wedge n=i+j\right) \vee j=0\right)
$$

Q3. Provide a well founded set (W, \prec), and a ranking function r that prove the program termination.
One ranking function whose value decreases during each loop iteration can be $r(i, n)=n-i$ with ranking bound $r(i, n) \geq 0$ such that the corresponding well-founded set is $(\mathbb{N},>)$.

Mini-test 3

Q1. Define $\operatorname{post}\left(\varphi(v), R\left(v, v^{\prime}\right)\right)=$
$\exists v^{\prime \prime}: \varphi\left[v^{\prime \prime} / v\right] \wedge \rho\left[v^{\prime \prime} / v\right]\left[v / v^{\prime}\right]$
Q2. Compute $\operatorname{post}\left(x \leq y \wedge z=1, x^{\prime}=x+1 \wedge y^{\prime}=y-1 \wedge z^{\prime} \geq z\right)$

$$
\begin{aligned}
& =\exists v^{\prime \prime}\left(x^{\prime \prime} \leq y^{\prime \prime} \wedge z^{\prime \prime}=1 \wedge x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime}-1 \wedge z \geq z^{\prime \prime}\right) \\
& =\exists v^{\prime \prime}\left(x^{\prime \prime} \leq y^{\prime \prime} \wedge z^{\prime \prime}=1 \wedge x^{\prime \prime}=x-1 \wedge y^{\prime \prime}=y+1 \wedge z \geq z^{\prime \prime}\right) \\
& =(x-1 \leq y+1 \wedge z \geq 1)
\end{aligned}
$$

Q3. Compute post $\left(a=b, a^{\prime}=a+1 \wedge b^{\prime}=b-2\right)$

$$
\begin{aligned}
& =\exists v^{\prime \prime}\left(a^{\prime \prime}=b^{\prime \prime}, a=a^{\prime \prime}+1 \wedge b=b^{\prime \prime}-2\right) \\
& =\exists v^{\prime \prime}\left(a^{\prime \prime}=b^{\prime \prime}, a^{\prime \prime}=a-1 \wedge b^{\prime \prime}=b+2\right) \\
& =(a-1=b+2)
\end{aligned}
$$

Q4. Prove $\forall \varphi \forall \psi \forall R: \operatorname{post}(\varphi \vee \psi, R) \models \operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R)$

1. assume $\operatorname{post}(\varphi \vee \psi, R)$
2. $\exists v ":(\varphi(v) \vee \psi(v))[v " / v] \wedge R[v " / v]\left[v / v^{\prime}\right]$ by reducing post into its definition
3. $\exists v ":\left(\varphi\left(v^{\prime \prime}\right) \wedge(R(v ", v)) \vee \exists v ":(\psi(v ") \wedge R(v ", v))\right.$ by distributing the conjunction and the existential quantifier over the disjunction
4. $\operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R)$ by rewriting back in terms of post
5. post $(\varphi, R) \vee \operatorname{post}(\psi, R)$ by rewriting back in terms of post
6. therefore, $\operatorname{post}(\varphi \vee \psi, R) \models \operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R)$
7. $\forall \varphi \forall \psi \forall R: \operatorname{post}(\varphi \vee \psi, R) \models \operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R)$ by applying \forall introduction
8. assume $(\operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R))$
9. $\left.\left(\exists v^{\prime \prime}: \varphi(v)\left[v^{\prime \prime} / v\right] \wedge R\left(v, v^{\prime}\right)\left[v^{\prime \prime} / v\right]\left[v / v^{\prime}\right]\right) \vee\left(\exists v ": \psi(v)\left[v^{\prime \prime} / v\right] \wedge R\left(v, v^{\prime}\right)\right)\left[v^{\prime \prime} / v\right]\left[v / v^{\prime}\right]\right)$ by reducing post into its definition
10. $\left.\exists v ":\left(\varphi\left(v^{\prime \prime}\right) \vee \psi\left(v^{\prime \prime}\right)\right) \wedge R\left(v^{\prime \prime}, v\right)\right)$ by collecting terms over the existential quantifier and R
11. $\operatorname{post}(\varphi \vee \psi, R)$ by rewriting back in terms of post
12. therefore, $(\operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R)) \models \operatorname{post}(\varphi \vee \psi, R)$
13. $\forall \varphi \forall \psi \forall R:(\operatorname{post}(\varphi, R) \vee \operatorname{post}(\psi, R)) \models \operatorname{post}(\varphi \vee \psi, R)$ by applying \forall introduction

Mini-test 4

Q1. Prove that α is monotonic, i.e., $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow(\alpha(\phi) \models \alpha(\psi))$.
Refer to Homework 4, Exercise 2, bullet point 2.
Q2. Given the set of predicates $P=\{x \geq 5, x \leq 10, x=6\}$, compute

1. $\operatorname{post}\left(x=6, x^{\prime}=x+1\right)=(x=7)$.
2. $\alpha(x \geq 6)=(x \geq 5)$.
3. post ${ }^{\#}\left(x=6, x^{\prime}=x+1\right)=(x \geq 5 \wedge x \leq 10)$.

Q3. Given a program text.
int x ;
A: if $(x>0)$ \{
B: while($x>0$) $x-$;
\} else \{
C: $\quad \mathrm{x}=10$;
\}
D:
Given the predicates $\{x \geq 0, x \leq 10\}$, compute the corresponding abstract reachability tree.
Let
$\varphi_{\text {init }}(v)=(p c=A)$
$\rho_{1}\left(v, v^{\prime}\right)=\left(p c=A \wedge p c^{\prime}=B \wedge x>0 \wedge x^{\prime}=x\right)$
$\rho_{2}\left(v, v^{\prime}\right)=\left(p c=A \wedge p c^{\prime}=C \wedge x \leq 0 \wedge x^{\prime}=x\right)$
$\rho_{3}\left(v, v^{\prime}\right)=\left(p c=B \wedge p c^{\prime}=B \wedge x>0 \wedge x^{\prime}=x+1\right)$
$\rho_{4}\left(v, v^{\prime}\right)=\left(p c=B \wedge p c^{\prime}=D \wedge x \leq 0 \wedge x^{\prime}=x\right)$
$\rho_{5}\left(v, v^{\prime}\right)=\left(p c=C \wedge p c^{\prime}=D \wedge x^{\prime}=10\right)$
We start from the abstract initial state and continue applying each of the 5 transition relations on each state until no new state is reached.

```
\(\alpha\left(\varphi_{\text {init }}(v)\right)=\alpha(p c=A)=\) true \(\equiv \varphi_{1}\)
post\# \(\left(\varphi_{1}, \rho_{1}\right)=(x \geq 0) \equiv \varphi_{2}\)
post \(^{\#}\left(\varphi_{1}, \rho_{2}\right)=(x \leq 10) \equiv \varphi_{3}\)
post \(\#\left(\varphi_{1}, \rho_{3}\right)=(x \geq 0) \equiv \varphi_{2}\) (already reached!)
post \({ }^{\#}\left(\varphi_{1}, \rho_{4}\right)=(x \leq 10) \equiv \varphi_{3}\) (already reached!)
post\# \(\left(\varphi_{1}, \rho_{5}\right)=(x \geq 0 \wedge x \leq 10) \equiv \varphi_{4}\)
```

We continue to do so for the remaining states φ_{2}, φ_{3}, and φ_{4}. But since there is no new state reached the abstract reachability computation stops here. The resulting tree is given below.

Mini-test 5

Q1. Given the program $\operatorname{Prog}=\left(\mathrm{V}, \varphi_{\text {init }}, \varphi_{\text {error }},\left\{\rho_{1}, \rho_{2}\right\}\right)$ where:

$$
\begin{aligned}
\varphi_{\text {init }} & =\left(p c=\ell_{1} \wedge x=0 \wedge y=0\right) \\
\rho_{1} & =\left(p c=\ell_{1} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime}=x+5 \wedge y^{\prime}=y\right) \\
\rho_{2} & =\left(p c=\ell_{2} \wedge p c^{\prime}=\ell_{3} \wedge x^{\prime}=x+1 \wedge y^{\prime}=x^{\prime}\right) \\
\varphi_{\text {error }} & =\left(p c=\ell_{3} \wedge y \leq 5\right)
\end{aligned}
$$

1. For the set of predicates $P=\left\{p c=\ell_{1}, p c=\ell_{2}, p c=\ell_{3}, x \geq 0, y \geq 5\right\}$, show that the abstraction along the path $\rho_{1} \rho_{2}$ reaches an error state, i.e., post ${ }^{\#}\left(\right.$ post $\left.^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right), \rho_{2}\right) \wedge \varphi_{\text {error }} \not \vDash$ false.

$$
\begin{aligned}
\alpha\left(\varphi_{\text {init }}\right) & =\left(p c=\ell_{1} \wedge x \geq 0\right) \\
\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right) & =\operatorname{post}^{\#}\left(p c=\ell_{1} \wedge x \geq 0, p c=\ell_{1} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime}=x+5 \wedge y^{\prime}=y\right) \\
& =\operatorname{post}^{\#}\left(p c=\ell_{2} \wedge x \geq 5\right)=\left(p c=\ell_{2} \wedge x \geq 0\right) \\
\text { post }^{\#}\left(\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right), \rho_{2}\right) & =\operatorname{post}^{\#}\left(p c=\ell_{2} \wedge x \geq 0, p c=\ell_{2} \wedge p c^{\prime}=\ell_{3} \wedge x^{\prime}=x+1 \wedge y^{\prime}=x^{\prime}\right) \\
& =\operatorname{post}^{\#}\left(p c=\ell_{3} \wedge x \geq 1 \wedge y=x\right)=\left(p c=\ell_{3} \wedge x \geq 0\right) \\
\text { post }^{\#}\left(\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right), \rho_{2}\right) \wedge \varphi_{\text {error }} & =\left(p c=\ell_{3} \wedge x \geq 0\right) \wedge\left(p c=\ell_{3} \wedge y \leq 5\right) \\
& =\left(p c=\ell_{3} \wedge x \geq 0 \wedge y \leq 5\right)
\end{aligned}
$$

$\left(p c=\ell_{3} \wedge x \geq 0 \wedge y \leq 5\right)$ is satisfiable which implies that $\left(p c=\ell_{3} \wedge x \geq 0 \wedge y \leq 5\right) \mid \vDash$ false.
2. Check if the path without abstraction reaches an error state.

$$
\begin{aligned}
\varphi_{\text {init }} & =\left(p c=\ell_{1} \wedge x=0 \wedge y=0\right) \\
\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right) & =\operatorname{post}\left(p c=\ell_{1} \wedge x=0 \wedge y=0, p c=\ell_{1} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime}=x+5 \wedge y^{\prime}=y\right) \\
& =\left(p c=\ell_{2} \wedge x=5 \wedge y=0\right) \\
\operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right), \rho_{2}\right) & =\operatorname{post}\left(p c=\ell_{2} \wedge x=5 \wedge y=0, p c=\ell_{2} \wedge p c^{\prime}=\ell_{3} \wedge x^{\prime}=x+1 \wedge y^{\prime}=x^{\prime}\right) \\
& =\left(p c=\ell_{3} \wedge x=6 \wedge y=x\right) \\
\operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right), \rho_{2}\right) \wedge \varphi_{\text {error }} & =\left(p c=\ell_{3} \wedge x=6 \wedge y=x\right) \wedge\left(p c=\ell_{3} \wedge y \leq 5\right) \\
& =\left(p c=\ell_{3} \wedge x=6 \wedge y=x \wedge y \leq 5\right)
\end{aligned}
$$

$\left(p c=\ell_{3} \wedge x=6 \wedge y=x \wedge y \leq 5\right)$ is unsatisfiable which implies that $\left(p c=\ell_{3} \wedge x=6 \wedge y=x \wedge y \leq 5\right) \models$ false.
3. Refine the set of predicates by finding ψ_{1}, ψ_{2}, and ψ_{3} such that $\varphi_{\text {init }} \models \psi_{1}, \psi_{1} \wedge \rho_{1} \vDash \psi_{2}, \psi_{2} \wedge \rho_{2} \vDash \psi_{3}$, and $\psi_{3} \wedge \varphi_{\text {error }} \models$ false.

We will apply interpolation to refine the set. Since we have two transition relations involved in reaching the error, we have three instances of interpolation to solve.
(a) Let $\delta_{1}(v)=\exists v^{\prime} v^{\prime \prime}\left(\rho_{1}\left(v, v^{\prime}\right) \circ \rho_{2}\left(v^{\prime}, v^{\prime \prime}\right)\right) \wedge \varphi_{e r r}\left(v^{\prime \prime}\right)$, we find $\psi_{1}(v)$ such that:

$$
\begin{aligned}
& \varphi_{\text {init }}(v) \models \psi_{1}(v) \\
& \psi_{1}(v) \wedge \delta_{1}(v) \models \text { false }
\end{aligned}
$$

$$
\delta_{1}(v)=\exists v^{\prime} v^{\prime \prime}\left(\rho_{1}\left(v, v^{\prime}\right) \circ \rho_{2}\left(v^{\prime}, v^{\prime \prime}\right)\right) \wedge \varphi_{e r r}\left(v^{\prime \prime}\right)
$$

$$
=\exists v^{\prime} v^{\prime \prime}\left(p c=\ell_{1} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime}=x+5 \wedge y^{\prime}=y\right) \wedge\left(p c^{\prime}=\ell_{2} \wedge p c^{\prime \prime}=\ell_{3} \wedge x^{\prime \prime}=x^{\prime}+1 \wedge y^{\prime \prime}=x^{\prime \prime}\right) \wedge\left(p c^{\prime \prime}=\ell_{3} \wedge y^{\prime \prime} \leq 5\right.
$$

$$
=\exists v^{\prime \prime}\left(p c=\ell_{1} \wedge x^{\prime \prime}-1 \leq x+5 \wedge y^{\prime \prime}=x^{\prime \prime} \wedge p c^{\prime \prime}=\ell_{3}\right) \wedge\left(p c^{\prime \prime}=\ell_{3} \wedge y^{\prime \prime} \leq 5\right)
$$

$$
=\left(p c=\ell_{1} \wedge x \leq-1\right)
$$

After replacing $\varphi_{\text {init }}(v)$ and $\delta_{1}(v)$ in the equation above, we get:

$$
\begin{aligned}
& \left(p c=\ell_{1} \wedge x=0 \wedge y=0\right) \models \psi_{1}(v) \\
& \psi_{1}(v) \wedge\left(p c=\ell_{1} \wedge x \leq-1\right) \models \text { false }
\end{aligned}
$$

and, then we find $\psi_{1}(v)$ as an interpolant of the formulas $\left(p c=\ell_{1} \wedge x=0 \wedge y=0\right)$ and $\left(p c=\ell_{1} \wedge x \leq-1\right)$.
To make things simpler, we can leave out $p c$ since it has the same value in both formulas. Then, we have the simplified task of finding interpolant for $(x=0 \wedge y=0)$ and $(x \leq-1)$. We can easily see that one interpolant is $x \geq 0$.
Therefore, we have $\psi_{1}(v)=(x \geq 0)$. Since we have it already in the set of predicates, the set remains the same.
(b) Let $\delta_{2}(v)=\exists v^{\prime} \rho_{2}\left(v, v^{\prime}\right) \wedge \varphi_{e r r}\left(v^{\prime}\right)$, we find $\psi_{2}(v)$ such that:
$\exists v^{\prime}\left(\psi_{1}\left(v^{\prime}\right) \wedge \rho_{1}\left(v^{\prime}, v\right)\right) \models=\psi_{2}(v)$
$\psi_{2}(v) \wedge \delta_{2}(v) \models$ false

$$
\begin{aligned}
\delta_{2}(v) & =\exists v^{\prime} \rho_{2}\left(v, v^{\prime}\right) \wedge \varphi_{e r r r}\left(v^{\prime}\right) \\
& =\exists v^{\prime}\left(p c=\ell_{2} \wedge p c^{\prime}=\ell_{3} \wedge x^{\prime}=x+1 \wedge y^{\prime}=x^{\prime}\right) \wedge\left(p c^{\prime}=\ell_{3} \wedge y^{\prime} \leq 5\right) \\
& =\left(p c=\ell_{2} \wedge x \leq 4\right) \\
\exists v^{\prime}\left(\psi_{1}\left(v^{\prime}\right) \wedge \rho_{1}\left(v^{\prime}, v\right)\right) & =\left(x^{\prime} \geq 0\right) \wedge\left(p c^{\prime}=\ell_{1} \wedge p c=\ell_{2} \wedge x=x^{\prime}+5 \wedge y=y^{\prime}\right) \\
& =\left(p c=\ell_{2} \wedge x \geq 5\right)
\end{aligned}
$$

After replacing these two formulas in the equation above, we get:
$\left(p c=\ell_{2} \wedge x \geq 5\right) \mid=\psi_{2}(v)$
$\psi_{2}(v) \wedge\left(p c=\ell_{2} \wedge x \leq 4\right) \models$ false
and, then we find $\psi_{2}(v)$ as an interpolant of the formulas ($p c=\ell_{2} \wedge x \geq 5$) and ($p c=\ell_{2} \wedge x \leq 4$).
Like we did for the first case, we can leave out $p c$ since it has the same value in both formulas. Then, we have the simplified task of finding interpolant for $(x \geq 5)$ and $(x \leq 4)$. One such interpolant is $x \geq 5$.
Therefore, we have $\psi_{2}(v)=(x \geq 5)$, and we refine the set of predicates into $P=\left\{p c=\ell_{1}, p c=\ell_{2}, p c=\ell_{3}, x \geq 0, y \geq\right.$ $5, x \geq 5\}$ by adding $\psi_{2}(v)$ into P.
(c) In this last step, we simply compute ψ_{3} such that:
$\exists v^{\prime}\left(\psi_{2}\left(v^{\prime}\right) \wedge \rho_{2}\left(v^{\prime}, v\right)\right) \models \psi_{3}(v)$
$\psi_{3}(v) \wedge \varphi_{\text {err }}(v) \models$ false

$$
\begin{aligned}
\exists v^{\prime}\left(\psi_{2}\left(v^{\prime}\right) \wedge \rho_{2}\left(v^{\prime}, v\right)\right) & =\left(x^{\prime} \geq 5\right) \wedge\left(p c^{\prime}=\ell_{2} \wedge p c=\ell_{3} \wedge x=x^{\prime}+1 \wedge y=x\right) \\
& =\left(p c=\ell_{3} \wedge x \geq 6 \wedge y \geq 6\right)
\end{aligned}
$$

After replacing this formula and $\varphi_{\text {err }}(v)$ in the equation above, we get:

$$
\begin{aligned}
& \left(p c=\ell_{3} \wedge x \geq 6 \wedge y \geq 6\right) \models \psi_{3}(v) \\
& \psi_{3}(v) \wedge\left(p c=\ell_{3} \wedge y \leq 5\right) \models \text { false }
\end{aligned}
$$

and, then we find $\psi_{3}(v)$ as an interpolant of the formulas ($p c=\ell_{3} \wedge x \geq 6 \wedge y \geq 6$) and ($p c=\ell_{3} \wedge y \leq 5$).
We also leave out $p c$ since it has the same value in both formulas. Then, we have the simplified task of finding interpolant for $(x \geq 6 \wedge y \geq 6)$ and ($y \leq 5$). One such interpolant is $y \geq 6$.
Therefore, we have $\psi_{3}(v)=(y \geq 6)$, and we refine the set of predicates into $P=\left\{p c=\ell_{1}, p c=\ell_{2}, p c=\ell_{3}, x \geq 0, y \geq\right.$ $5, x \geq 5, y \geq 6\}$ by adding $\psi_{3}(v)$ into P.
Therefore, we have refined P such that $P=\left\{p c=\ell_{1}, p c=\ell_{2}, p c=\ell_{3}, x \geq 0, y \geq 5, x \geq 5, y \geq 6\right\}$.
4. Check that post ${ }^{\#}\left(\right.$ post $\left.\#\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right), \rho_{2}\right) \models$ false when using the refined abstraction function.

$$
\begin{aligned}
\alpha\left(\varphi_{\text {init }}\right) & \\
\operatorname{post}^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right) & \left(p c=\ell_{1} \wedge x \geq 0\right) \\
& =\operatorname{post}^{\#}\left(p c=\ell_{1} \wedge x \geq 0, p c=\ell_{1} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime}=x+5 \wedge y^{\prime}=y\right) \\
& =\operatorname{post}^{\#}\left(p c=\ell_{2} \wedge x \geq 5\right)=\left(p c=\ell_{2} \wedge x \geq 5\right) \\
\text { post }^{\#}\left(\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right), \rho_{2}\right) & =\operatorname{post}^{\#}\left(p c=\ell_{2} \wedge x \geq 5, p c=\ell_{2} \wedge p c^{\prime}=\ell_{3} \wedge x^{\prime}=x+1 \wedge y^{\prime}=x^{\prime}\right) \\
& =\operatorname{post}^{\#}\left(p c=\ell_{3} \wedge x \geq 6 \wedge y \geq 6\right)=\left(p c=\ell_{3} \wedge x \geq 5 \wedge y \geq 6\right) \\
\text { post }^{\#}\left(\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{1}\right), \rho_{2}\right) \wedge \varphi_{\text {error }} & =\left(p c=\ell_{3} \wedge x \geq 5 \wedge y \geq 6\right) \wedge\left(p c=\ell_{3} \wedge y \leq 5\right) \\
& =\left(p c=\ell_{3} \wedge x \geq 5 \wedge y \geq 6 \wedge y \leq 5\right)
\end{aligned}
$$

($p c=\ell_{3} \wedge x \geq 5 \wedge y \geq 6 \wedge y \leq 5$) is unsatisfiable which implies that ($p c=\ell_{3} \wedge x \geq 5 \wedge y \geq 6 \wedge y \leq 5$) \models false.

Q2. Find an interpolant for $x \geq 5 \wedge z \geq y+x$ and $z \leq y+a \wedge a \leq 4$.
We compute the interpolant applying the algorithm:
Let $\phi=(x \geq 5 \wedge z \geq y+x)$ and $\psi=(z \leq y+a \wedge a \leq 4)$. After arranging and rewritting the formulas to only use the inequality \leq, we get $\phi=(-x \leq-5 \wedge x+y-z \leq 0)$ and $\psi=(-y+z-a \leq 0 \wedge a \leq 4)$. We represent the formulas in matrix form as follows:

$$
\begin{array}{ll}
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
a
\end{array}\right) \leq\binom{-5}{0} & (\text { for } \phi) \\
\left(\begin{array}{cccc}
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
a
\end{array}\right) \leq\binom{ 0}{4} & (\text { for } \psi)
\end{array}
$$

By using these matrices, we find a 1×4 matrix $(\lambda \mu)$ where λ and μ themselves are 1×2 matrices such that:

$$
\begin{aligned}
& \exists \lambda \exists \mu \\
& \quad \lambda \\
& \quad \geq 0 \wedge \mu \geq 0 \wedge \\
& \left(\begin{array}{ll}
\lambda & \mu
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0 \\
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)=0 \wedge\left(\begin{array}{ll}
\lambda & \mu
\end{array}\right)\left(\begin{array}{c}
-5 \\
0 \\
0 \\
4
\end{array}\right) \leq-1
\end{aligned}
$$

One solution can be $\left(\begin{array}{ll}\lambda\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1\end{array} 1\right)$. We then compute the interpolant by applying λ which is $\left(\begin{array}{ll}1 & 1\end{array}\right)$ on the coeficient matrix of ϕ. i.e.

$$
\begin{aligned}
& i=(\lambda)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & -1 & 0
\end{array}\right) \\
& i_{0}=(\lambda)\binom{-5}{0}=-5
\end{aligned}
$$

Therefore, the interpolant we computed is:

$$
i x \leq i_{0} \equiv\left(\begin{array}{llll}
0 & 1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
a
\end{array}\right) \leq-5 \equiv(y-z \leq-5)
$$

Mini-test 6 Given the program text:

```
int x ;
int f(int a) \{
    int b;
f1: \(b=a+b ;\)
f2: if (a>=0)
f3: \(\{f(a-1) ;\}\)
        else \}
        \{ return b+x; \}
f5: \}
```

Q1. Give global variables of the program and the local variables of each procedure.
Globals: x, ret
Locals of $f: a, b$
Locals of main: m,n

Q2. Give a control flow graphs for each procedure.

Q3. For procedure f, give the transition relations $s t e p_{f}$, call $_{f, f}$, ret $_{f}$, and local_{f}.

- $\operatorname{step}_{f}=$
$\left(p c_{f}=f_{1} \wedge b^{\prime}=a+b \wedge a^{\prime}=a \wedge x^{\prime}=x \wedge p c_{f}^{\prime}=f_{2}\right) \vee$ $\left(a \geq 0 \wedge p c_{f}=f_{2} \wedge b^{\prime}=b \wedge a^{\prime}=a \wedge x^{\prime}=x \wedge p c_{f}^{\prime}=f_{3}\right) \vee$
$\left(a<0 \wedge p c_{f}=f_{2} \wedge b^{\prime}=b \wedge a^{\prime}=a \wedge x^{\prime}=x \wedge p c_{f}^{\prime}=f_{4}\right)$
- $\operatorname{call}_{f, f}=\left(p c_{f}=f_{3} \wedge p c_{f}^{\prime}=f_{1} \wedge a^{\prime}=a-1\right)$
- $\operatorname{ret}_{f}=\left(p c_{f}=f_{3} \wedge r e t^{\prime}=r e t\right) \vee\left(p c_{f}=f_{4} \wedge r e t^{\prime}=b+x\right)$
- local $_{f}=$ true

Q4. For procedure main, give the transition relations $s t e p_{\text {main }}$, call $_{\text {main,f }}$, ret $_{\text {main }}$, and $l o c a l_{\text {main }}$.

- step $_{\text {main }}=$
$\left(p c_{\text {main }}=m_{3} \wedge m=n \wedge m^{\prime}=m \wedge n^{\prime}=n \wedge x^{\prime}=x \wedge p c_{\text {main }}^{\prime}=m_{\text {safe }}\right) \vee$ $\left(p c_{\text {main }}=m_{3} \wedge m \neq n \wedge m^{\prime}=m \wedge n^{\prime}=n \wedge x^{\prime}=x \wedge p c_{\text {main }}^{\prime}=m_{\text {err }}\right)$
- call $_{\text {main }, f}=\left(p c_{\text {main }}=m_{1} \wedge p c_{f}=f_{1} \wedge a^{\prime}=x\right) \vee$
$\left(p c_{\text {main }}=m_{2} \wedge p c_{f}=f_{1} \wedge a^{\prime}=\neg x\right)$
- $\operatorname{ret}_{f}=\left(p c_{\text {main }}=m_{2} \wedge n^{\prime}=r e t\right) \vee\left(p c_{\text {main }}=m_{3} \wedge m^{\prime}=r e t\right)$
- local $_{f}=\left(p c_{\text {main }}=m_{1} \wedge p c_{\text {main }}^{\prime}=m_{2} \wedge m^{\prime}=m\right) \vee$ $\left(p c_{\text {main }}=m_{2} \wedge p c_{\text {main }}^{\prime}=m_{3} \wedge n^{\prime}=n\right)$

Q5. We consider a call site where p calls q. Show rules that present changes to the summaries of p and q respectively:

1. Summeraization inference rule for $s u m m_{p}$

$$
\begin{gathered}
\left(\left(g, l_{p}\right),\left(g^{\prime}, l_{p}^{\prime}\right)\right) \in \operatorname{summ}_{p} \quad\left(\left(g^{\prime}, l_{p}^{\prime}, l_{q}\right)\right) \models \operatorname{call}_{p, q}\left(V_{G}, V_{p}, V_{q}\right) \\
\left(\left(g^{\prime}, l_{q}\right),\left(g^{\prime \prime}, l_{q}^{\prime}\right)\right) \in \operatorname{summ}_{q} \quad\left(g^{\prime \prime}, l_{q}^{\prime}, q^{\prime \prime \prime}\right) \models \operatorname{ret}_{q}\left(V_{G}, V_{q}, V_{G}^{\prime}\right)\left(l_{p}^{\prime}, l_{p}^{\prime \prime}\right) \models \operatorname{loc}_{p}\left(V_{p}, V_{p}^{\prime}\right) \\
\hline\left(\left(g, l_{p}\right),\left(g^{\prime \prime \prime}, l_{p}^{\prime \prime}\right)\right) \in \operatorname{summ}_{p}
\end{gathered}
$$

(Or as entailment)

$$
\begin{gathered}
\operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime}, V_{p}^{\prime}\right)\right) \wedge \operatorname{call}_{p, q}\left(\left(V_{G}^{\prime}, V_{p}^{\prime}, V_{q}\right)\right) \wedge \operatorname{summ}_{q}\left(\left(V_{G}^{\prime}, V_{q}\right),\left(V_{G}^{\prime \prime}, V_{q}^{\prime}\right)\right) \wedge \\
\operatorname{ret}_{q}\left(V_{G}^{\prime \prime}, V_{q}^{\prime}, V_{G}^{\prime \prime \prime}\right) \wedge \operatorname{loc}_{p}\left(V_{p}^{\prime}, V_{p}^{\prime \prime}\right) \models \operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime \prime \prime}, V_{p}^{\prime \prime}\right)\right)
\end{gathered}
$$

2. Summeraization inference rule for summ $_{q}$

$$
\frac{\left(\left(g, l_{p}\right),\left(g^{\prime}, l_{p}^{\prime}\right)\right) \in \operatorname{summ}_{p} \quad\left(\left(g^{\prime}, l_{p}^{\prime}, l_{q}\right)\right) \models \operatorname{call}_{p, q}\left(V_{G}, V_{p}, V_{q}\right)}{\left(\left(g^{\prime}, l_{q}\right),\left(g^{\prime}, l_{q}\right)\right) \in \operatorname{summ}_{q}}
$$

(Or as entailment)

$$
\operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime}, V_{p}^{\prime}\right)\right) \wedge \operatorname{call}_{p, q}\left(\left(V_{G}^{\prime}, V_{p}^{\prime}, V_{q}\right)\right) \models \operatorname{summ}_{q}\left(\left(V_{G}^{\prime}, V_{q}\right),\left(V_{G}^{\prime}, V_{q}\right)\right)
$$

Mini-test 7

Q1 Given a mutual exclusion algorithm for 2 threads:

```
                    initially turn }\in{1,2}\wedge Q Q = Q = false
// Thread 1:
    // Thread 2:
A: }\mp@subsup{Q}{1}{\prime}:=\mathrm{ true;
B: turn:=2;
C: await }\langle\neg\mp@subsup{Q}{2}{}\vee\mathrm{ turn =1>;
D: Q1:= false; goto A;
A: Q Q :=true;
B: turn:=1;
C: await }\langle\neg\mp@subsup{Q}{1}{}\vee\mathrm{ turn = 2 >;
D: Q Q := false; goto A;
```

1. Is mutual exclusion for locations D still satisfied? Why or why not?

The strongest inductive invariant is:

$$
I=\begin{array}{ll}
\left(P C_{1}=A \wedge P C_{2}=A \wedge \neg Q_{1} \wedge \neg Q_{2}\right) & \vee\left(P C_{1}=B \wedge P C_{2}=A \wedge Q_{1} \wedge \neg Q_{2}\right) \vee \\
\left(P C_{1}=A \wedge P C_{2}=B \wedge \neg Q_{1} \wedge Q_{2}\right) & \vee\left(P C_{1}=C \wedge P C_{2}=A \wedge Q_{1} \wedge \neg Q_{2} \wedge \text { turn }=2\right) \vee \\
\left(P C_{1}=B \wedge P C_{2}=B \wedge Q_{1} \wedge Q_{2}\right) & \vee\left(P C_{1}=A \wedge P C_{2}=C \wedge \neg Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) \vee \\
\left(P C_{1}=D \wedge P C_{2}=A \wedge Q_{1} \wedge \neg Q_{2} \wedge \text { turn }=2\right) & \vee\left(P C_{1}=C \wedge P C_{2}=B \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) \vee \\
\left(P C_{1}=B \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) & \vee\left(P C_{1}=A \wedge P C_{2}=D \wedge \neg Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) \vee \\
\left(P C_{1}=D \wedge P C_{2}=B \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) & \vee\left(P C_{1}=C \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) \vee \\
\left(P C_{1}=C \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) & \vee\left(P C_{1}=B \wedge P C_{2}=D \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) \vee \\
\left(P C_{1}=D \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) & \vee\left(P C_{1}=C \wedge P C_{2}=D \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) \vee
\end{array}
$$

and, we can see that there is no any state that satisfies $\left(P C_{1}=D \wedge P C_{2}=D\right)$. To access location D simultaneously, both $\left(\neg Q_{2} \vee\right.$ turn $\left.=1\right)$ and $\left(\neg Q_{1} \vee\right.$ turn $\left.=2\right)$ must hold. But, we know that $Q_{1}=Q_{2}=$ true when both threads want to access location D. Therefore, to access the location (turn $=1 \wedge t u r n=2$) must hold, which can never be satisfied.
2. Compute the number of states of the protocol.
$\left(\right.$ Hint: State $=$ Shared $\times \prod_{i=1}^{\mid \text {Tid } \mid}$ Local $\left._{i}\right)$.
There are three shared variables, Q_{1}, Q_{2} and turn, each with two possible values, and one local variable $P C$ with four possible values for each thread.
\mid States $\mid=(2 \times 2 \times 2) \times 4 \times 4=128$
Q2 Given a mutual exclusion algorithm for 2 threads:

```
        initially t=s=0;
// Thread 1:
while(true){
    A: a=t;
        t:=t+1;
    B: await <a=s>;
    C: //critical section
        s:=s+1;
}
    // Thread 2:
    while(true){
        A: b=t;
        t:=t+1;
```

and, an inductive invariant:

$$
\begin{align*}
& I=\quad\left(p c_{1}=A \wedge p c_{2}=A \wedge t=s\right) \vee \\
& \left(p c_{1}=A \wedge p c_{2}=B \wedge t=s+1 \wedge b=t-1\right) \vee \\
& \left(p c_{1}=A \wedge p c_{2}=C \wedge t=s+1 \wedge b=s\right) \vee \\
& \left(p c_{1}=B \wedge p c_{2}=A \wedge t=s+1 \wedge a=t-1\right) \vee \\
& \left(p c_{1}=B \wedge p c_{2}=B \wedge t=s+2 \wedge a=t-1 \wedge b=t-2\right) \vee \tag{1}\\
& \left(p c_{1}=B \wedge p c_{2}=B \wedge t=s+2 \wedge a=t-2 \wedge b=t-1\right) \vee \\
& \left(p c_{1}=B \wedge p c_{2}=C \wedge t=s+2 \wedge a=t-1 \wedge b=s\right) \vee \\
& \left(p c_{1}=C \wedge p c_{2}=B \wedge t=s+2 \wedge a=s \wedge b=t-1\right) \vee \\
& \left(p c_{1}=C \wedge p c_{2}=A \wedge t=s+1 \wedge a=s\right)
\end{align*}
$$

Prove the stability of I under the transitions:
(for the sake of reference, each disjunct of the invariant is given a name).

1. $A \rightarrow B$ of thread $_{1}$

We first represent the transition formally as $\rho\left(v, v^{\prime}\right)=\left(p c_{1}=A \wedge p c_{1}^{\prime}=B \wedge a^{\prime}=t \wedge t^{\prime}=t+1 \wedge b^{\prime}=b \wedge p c_{2}^{\prime}=p c_{2}\right)$, and then apply post over the inductive invariant to check if the computed states are in the invariant or not. This transition is appicable only on the disjuncts $D_{1}(v), D_{2}(v)$, and $D_{3}(v)$.

$$
\begin{aligned}
\operatorname{post}\left(D_{1}, \rho\right) & =\operatorname{post}\left(p c_{1}=A \wedge p c_{2}=A \wedge t=s, p c_{1}=A \wedge p c_{1}^{\prime}=B \wedge a^{\prime}=t \wedge t^{\prime}=t+1 \wedge b^{\prime}=b \wedge p c_{2}^{\prime}=p c_{2}\right) \\
& =\left(p c_{1}=B \wedge p c_{2}=A \wedge t=s+1 \wedge a=t-1\right) \models D_{4} \\
\operatorname{post}\left(D_{2}, \rho\right) & =\operatorname{post}\left(p c_{1}=A \wedge p c_{2}=B \wedge t=s+1 \wedge b=t-1, p c_{1}=A \wedge p c_{1}^{\prime}=B \wedge a^{\prime}=t \wedge t^{\prime}=t+1 \wedge b^{\prime}=b \wedge p c_{2}^{\prime}=p c_{2}\right) \\
& =\left(p c_{1}=B \wedge p c_{2}=B \wedge t=s+2 \wedge a=t-1 \wedge b=t-2\right) \models D_{5} \\
\operatorname{post}\left(D_{3}, \rho\right) & =\operatorname{post}\left(p c_{1}=A \wedge p c_{2}=C \wedge t=s+1 \wedge b=s, p c_{1}=A \wedge p c_{1}^{\prime}=B \wedge a^{\prime}=t \wedge t^{\prime}=t+1 \wedge b^{\prime}=b \wedge p c_{2}^{\prime}=p c_{2}\right) \\
& =\left(p c_{1}=B \wedge p c_{2}=C \wedge t=s+2 \wedge a=t-1 \wedge b=s\right) \models D_{7}
\end{aligned}
$$

We can see that application of this transition results in the states that are already in the inductive invariant. Therefore, the invariant I is stable under the transition.
2. $C \rightarrow A$ of $t h r e a d ~_{2}$

The transition is represented formally as $\rho\left(v, v^{\prime}\right)=\left(p c_{2}=C \wedge p c_{2}^{\prime}=A \wedge s^{\prime}=s+1 \wedge p c_{1}^{\prime}=p c_{1} \wedge a^{\prime}=a \wedge b^{\prime}=b\right)$, and it is applicable on the disjuncts $D_{3}(v)$, and $D_{7}(v)$.

$$
\begin{aligned}
\operatorname{post}\left(D_{3}, \rho\right) & =\operatorname{post}\left(p c_{1}=A \wedge p c_{2}=C \wedge t=s+1 \wedge b=s, p c_{2}=C \wedge p c_{2}^{\prime}=A \wedge s^{\prime}=s+1 \wedge p c_{1}^{\prime}=p c_{1} \wedge a^{\prime}=a \wedge b^{\prime}=b\right) \\
& =\left(p c_{1}=A \wedge p c_{2}=A \wedge t=s \wedge b=s-1\right) \models D_{1} \\
\operatorname{post}\left(D_{7}, \rho\right) & =\operatorname{post}\left(p c_{1}=B \wedge p c_{2}=C \wedge t=s+2 \wedge a=t-1 \wedge b=s, p c_{2}=C \wedge p c_{2}^{\prime}=A \wedge s^{\prime}=s+1 \wedge p c_{1}^{\prime}=p c_{1} \wedge\right. \\
& \left.a^{\prime}=a \wedge b^{\prime}=b\right) \\
& =\left(p c_{1}=B \wedge p c_{2}=A \wedge t=s+1 \wedge a=t-1 \wedge b=s-1\right) \mid=D_{4}
\end{aligned}
$$

Here also the transition results in the states that are already in the invariant I. Therefore, the invariant I is stable under this transition as well.

Mini-test 8

In all the exercises, if you use abbreviations, define them upfront. The symbol \mathfrak{P} denotes the powerset.
Q1. Consider the two-threaded program given by the following code:
initially $\mathrm{x}=0$
// Thread 1:

A: 〈 await $\mathrm{x}=0 ; \mathrm{x}:=1\rangle \|$| // Thread 2: |
| :--- |
| A: 〈 await $\mathrm{x}=0 ; \mathrm{x}:=2\rangle$ |
| $\mathrm{B}:$ |

Q1.1. Give a suitable formal representation of the above program.

$$
\begin{aligned}
\text { Tid } & =\{1,2\} \\
\text { Shared } & =(\{x\} \mapsto\{0,1,2\}) \\
\text { Local }_{1} & =\left(\left\{p c_{1}\right\} \mapsto\{A, B\}\right) \\
\text { Local }_{2} & =\left(\left\{p c_{2}\right\} \mapsto\{A, B\}\right) \\
\rightarrow_{1} & =\left\{\left(\left([x \mapsto 0],\left[p c_{1} \mapsto A\right]\right),\left([x \mapsto 1],\left[p c_{1} \mapsto B\right]\right)\right)\right\} \\
\rightarrow_{2} & =\left\{\left(\left([x \mapsto 0],\left[p c_{2} \mapsto A\right]\right),\left([x \mapsto 2],\left[p c_{2} \mapsto B\right]\right)\right)\right\} \\
\text { init } & =\left\{\left([x \mapsto 0],\left[p c_{1} \mapsto A\right],\left[p c_{2} \mapsto A\right]\right)\right\}
\end{aligned}
$$

Q1.2. Prove mutual exclusion for locations B (i.e., in any reachable state the threads cannot simultaneously have control flow location B) by thread-modular verification. For your reference, the thread-modular inference rules are

$$
\begin{aligned}
& (\mathrm{INIT}) \frac{t \in \operatorname{Tid} \quad(g, l) \in \text { init }}{\left(g, l_{t}\right) \in R_{t}} \quad(\mathrm{STEP}) \frac{t \in \operatorname{Tid} \quad(g, l) \in R_{t} \quad(g, l) \rightarrow_{t}\left(g^{\prime}, l^{\prime}\right)}{\left(g^{\prime}, l^{\prime}\right) \in R_{t} \quad\left(g, g^{\prime}\right) \in G_{t}} \\
& (\mathrm{ENV}) \frac{t \in \operatorname{Tid} \quad(g, l) \in R_{t} \quad \hat{t} \in \operatorname{Tid} \backslash\{t\} \quad\left(g, g^{\prime}\right) \in G_{\hat{\hat{t}}}}{\left(g^{\prime}, l\right) \in R_{t}}
\end{aligned}
$$

and the multithreaded Cartesian concretization is

$$
\begin{aligned}
\gamma_{\mathrm{mc}}: \prod_{t \in \operatorname{Tid}} \mathfrak{P}\left(\text { Shared } \times \operatorname{Local}_{t}\right) & \rightarrow \text { State }, \\
\gamma_{\mathrm{mc}}\left(\left(S_{t}\right)_{t \in \operatorname{Tid}}\right) & =\left\{(g, l) \in \text { State } \mid \forall t \in \operatorname{Tid}:\left(g, l_{t}\right) \in S_{t}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=\left\{\left([x \mapsto 0],\left[p c_{1} \mapsto A\right]\right),\left([x \mapsto 1],\left[p c_{1} \mapsto \quad, \quad \begin{array}{l}
R_{2}=\{([x \mapsto \\
\left.B]),\left([x \mapsto 1],\left[p c_{2} \mapsto A\right]\right)\right\} \\
\left.B]),\left([x \mapsto 2],\left[p c_{1} \mapsto A\right]\right)\right\}
\end{array} \quad, \begin{array}{lll}
\mapsto
\end{array}\right),\left([x \mapsto 2],\left[p c_{2} \mapsto\right.\right.\right.\right.
\end{aligned}
$$

$$
G_{1}=\{([x \mapsto 0],[x \mapsto 1])\} \quad, \quad G_{2}=\{([x \mapsto 0],[x \mapsto 2])\}
$$

Reach $^{\#}=\gamma_{\mathrm{mc}}\left(\left(R_{t}\right)_{t \in \mathrm{Tid}}\right)=\left\{\left([x \mapsto 0],\left[p c_{1} \mapsto A\right],\left[p c_{2} \mapsto A\right]\right),\left([x \mapsto 1],\left[p c_{1} \mapsto B\right],\left[p c_{2} \mapsto A\right]\right),\left([x \mapsto 2],\left[p c_{1} \mapsto A\right],\left[p c_{2} \mapsto B\right]\right)\right\}$ It can be seen that there is no reachable state where both threads are at location B.

Q2. Consider an arbitrary multithreaded program. Let State be the set of states of the program and \rightarrow be its transition relation. Let post be the successor operator
post: \mathfrak{P} (State) $\rightarrow \mathfrak{P}$ (State),
$\operatorname{post}(Q)=\left\{q^{\prime} \mid \exists q \in Q: q \rightarrow q^{\prime}\right\}$.
Let $f: \mathfrak{P}$ (State) $\rightarrow \mathfrak{P}$ (State), $f(Q)=\operatorname{init} \cup \operatorname{post}(Q)$.

Q2.1. Show that f is monotone with respect to inclusion.
Formally, show that that for all $Q, Q^{\prime} \in \mathfrak{P}$ (State) we have $Q \subseteq Q^{\prime} \Rightarrow f(Q) \subseteq f\left(Q^{\prime}\right)$.
Let $Q \subseteq Q^{\prime}$. We will show that $f(Q)$ is a subset of $f\left(Q^{\prime}\right)$. Let $q^{\prime} \in f(Q)$. If $q^{\prime} \in$ init, then $q^{\prime} \in f\left(Q^{\prime}\right)$. Otherwise, $q^{\prime} \in \operatorname{post}(Q)$, so there is $q \in Q$ such that $q \rightarrow q^{\prime}$. Then, $q \in Q^{\prime}$. $q^{\prime} \in \operatorname{post}\left(Q^{\prime}\right) \subseteq f\left(Q^{\prime}\right)$.

Q2.2. Does f have a fixpoint? Formally, is there $Q \in \mathfrak{P}$ (State) such that $f(Q)=Q$?
Yes, since monotone maps on a complete lattice always have fixpoints. And, $(\mathfrak{P}($ State $), \subseteq)$ is a complete lattice.

Mini-test 9

In all the exercises, if you use abbreviations, define them upfront. ${ }^{\sim} \mathrm{x}$ denotes arithmetic negation.
Q1 Given a typing environment $T:=\{a b s:=i n t \rightarrow i n t\}$, infer the type using the inference rules in the handout (construct the tree):

```
let val x = ~3 in abs x end
```

```
T |- ~ : int -> int T |- 3 : int T, {x : int} |- abs : int -> int T, {x : int} |- x : int
------------------------------------ -------------------------------------------------------------------
T |> val x = ~ 3 : T, {x : int} T, {x : int} |- abs x : int
T |- let val x = ~ 3 in abs x end : int
```

Q2 Which sequence of typing environments is obtained by typing the following declarations starting with the empty typing environment:
(a) val b = true \{b: bool $\}$
(b) val $\mathrm{x}=$ let fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$ in square 5 end \{b: bool, $\mathrm{x}: \operatorname{int}\}$

Q3 Which sequence of value environments is obtained by evaluating the following declarations starting with the empty value environment:
(a) val $y=3$
$[\mathrm{y}:=3]$
(b) fun max $x=$ if $x>y$ then true else false
$[y:=3, \max :=($ fun $\max x=$ if $x>y$ then true else false, $[y:=3])]$
(c) val $\mathrm{y}=\max \mathrm{y}$
$[y:=$ false, $\max :=($ fun $\max x=$ if $x>y$ then true else false, $[y:=3])]$
(d) fun fact $y=$ if $y<1$ then 1 else $y * f a c t(y-1)$
$[\mathrm{y}:=$ false, $\max :=($ fun $\max \mathrm{x}=$ if $\mathrm{x}>\mathrm{y}$ then true else false, $[\mathrm{y}:=3]$), fact $=($ fun fact $\mathrm{y}=$ if $\mathrm{y}<1$ then 1 else $\left.\left.y^{*} \operatorname{fact}(\mathrm{y}-1),[]\right)\right]$

Q4 Formalize as a refinement type:
f is a function that takes as input a positive integer x and returns an integer that is greater than or equals the value of x, but is smaller than the value of identifier y.
$f:(x:\{v:$ int $\mid v>0\}->\{v:$ int $\mid v \geq x \wedge v<y\})$
Q5 Given a value environment $V:=[y:=10]$, evaluate using the inference rules in the handout (construct the tree):

```
let val z = y*y in if z>y then true else false end
```

```
            V, [z:=100] |= z :100 V, [z :=100] |= y : 10
V |= y : 10 V |= y : 10 V, [z :=100] |= z > y : true V, [z :=100] |= true : true
------------------------------- -------------------------------------------------------------------
V |>> val z = y*y : V, [z :=100] V, [z :=100] |= if z>y then true else false : true
-------------------------------------------------------
V |= let val z = y*y in if z>y then true else false end : true
```

