
Mini-test 1

Q1. Prove that:

1. ∃x∀yA(x, y)→ ∀y∃xA(x, y)

1. assume ∃x∀yA(x, y)

2. ∀yA(a, y) for some a by existential elimination

3. A(a, b) for an arbitrary b by universal elimination

4. ∃xA(x, b) by ∃ introduction

5. ∀y∃xA(x, y) by ∀ introduction

6. ∃x∀yA(x, y)→ ∀y∃xA(x, y) by → introduction from (1) and (5)

2. ∀x(A(x)→ B(x)) ∧ ∀x(B(x)→ C(x))→ ∀x(A(x)→ C(x))

1. assume ∀x(A(x)→ B(x)) ∧ ∀x(B(x)→ C(x))

2. ∀x(A(x)→ B(x)) by ∧ elimination from (1)

3. (A(x)→ B(x)) by ∀ elimination from (2)

4. ∀x(B(x)→ C(x)) by ∧ elimination from (1)

5. (B(x)→ C(x)) by ∀ elimination from (4)

6. assume A(x)

7. B(x) by → elimination from (3)

8. C(x) by → elimination from (5)

9. (A(x)→ C(x)) by → introduction from (6) and (8)

10. ∀x(A(x)→ C(x)) by ∀ introduction

11. ∀x(A(x)→ B(x)) ∧ ∀x(B(x)→ C(x))→ ∀x(A(x)→ C(x)) by → introduction from (1) and (10)

Q2. Does the logical statement below hold? If so, give a proof. If not, give a counterexample for it.

∀x∃yA(x, y)→ ∃y∀xA(x, y)

No, it doesn’t. A counterexample can be {D = {1, 2}, A(1, 1), A(2, 2)}

Q3. Does the satisfaction hold?

1. {D = {1, 2}, p(1, 2), q(1)} |= ∀x∀y p(x, y)→ q(x) [yes/no] YES

2. {D = {1, 2}, p(1, 2), q(1)} |= ∀x p(x, x)→ q(x) [yes/no] YES

3. {D = {1, 2}, p(1, 1), q(2)} |= ∀x∀y p(x, y)→ q(x) [yes/no] NO

1

Mini-test 2

Given the program text

void main(int n) {

int i, j;

L1: i = 0; j = n;

L2: while (i < n) { i++; j--; }

L3 assert(n == i+j);

L4: assert(j == 0);

}

Q1. Represent the program formally, i.e., as a tuple P = (V, ϕinit , ϕerror , R).

V = (pc, n, i, j)
ϕinit(v) = (pc = L1)
ϕerr (v) = (n 6= i+ j ∨ j 6= 0)
R = (pc = L1 ∧ pc′ = L2 ∧ i′ = 0 ∧ j′ = n)∨
(pc = L2 ∧ pc′ = L2 ∧ i < n ∧ i′ = i+ 1 ∧ j′ = j + 1)∨
(pc = L2 ∧ pc′ = L3 ∧ i ≥ n)∨
(pc = L3 ∧ pc′ = L4 ∧ n = i+ j)∨
(pc = L3 ∧ pc′ = Lerr ∧ n 6= I + j)∨
(pc = L4 ∧ pc′ = Lsafe ∧ j = 0)∨
(pc = L4 ∧ pc′ = Lerr ∧ j 6= 0)

Q2. Inductive invariant computation:

Q2.1. Give an inductive invariant that proves the first assertion. Give conditions that this inductive invariant has to satisfy.

ϕ = (pc = L1 ∨ n = i+ j)

The conditions that this inductive invariant has to satisfy are:
ϕinit |= ϕ
post(ϕ, ρR) |= ϕ

Q2.2. Give an inductive invariant that proves the second assertion.

(pc = L1 ∨ (pc = L2 ∧ n = i+ j) ∨ j = 0)

Q3. Provide a well founded set (W,≺), and a ranking function r that prove the program termination.

One ranking function whose value decreases during each loop iteration can be r(i, n) = n − i with ranking bound r(i, n) ≥ 0
such that the corresponding well-founded set is (N, >).

2

Mini-test 3

Q1. Define post(ϕ(v), R(v, v′)) =

∃v′′ : ϕ[v′′/v] ∧ ρ[v′′/v][v/v′]

Q2. Compute post(x ≤ y ∧ z = 1, x′ = x+ 1 ∧ y′ = y − 1 ∧ z′ ≥ z)

= ∃v′′ (x′′ ≤ y′′ ∧ z′′ = 1 ∧ x = x′′ + 1 ∧ y = y′′ − 1 ∧ z ≥ z′′)
= ∃v′′ (x′′ ≤ y′′ ∧ z′′ = 1 ∧ x′′ = x− 1 ∧ y′′ = y + 1 ∧ z ≥ z′′)
= (x− 1 ≤ y + 1 ∧ z ≥ 1)

Q3. Compute post(a = b, a′ = a+ 1 ∧ b′ = b− 2)

= ∃v′′ (a′′ = b′′, a = a′′ + 1 ∧ b = b′′ − 2)

= ∃v′′ (a′′ = b′′, a′′ = a− 1 ∧ b′′ = b+ 2)

= (a− 1 = b+ 2)

Q4. Prove ∀ϕ∀ψ∀R : post(ϕ ∨ ψ,R) |=| post(ϕ,R) ∨ post(ψ,R)

1. assume post(ϕ ∨ ψ,R)

2. ∃v” : (ϕ(v) ∨ ψ(v))[v”/v] ∧R[v”/v][v/v′] by reducing post into its definition

3. ∃v” : (ϕ(v”) ∧ (R(v”, v)) ∨ ∃v” : (ψ(v”) ∧ R(v”, v)) by distributing the conjunction and the existential quantifier over the
disjunction

4. post(ϕ,R) ∨ post(ψ,R) by rewriting back in terms of post

5. post(ϕ,R) ∨ post(ψ,R) by rewriting back in terms of post

6. therefore, post(ϕ ∨ ψ,R) |= post(ϕ,R) ∨ post(ψ,R)

7. ∀ϕ∀ψ∀R : post(ϕ ∨ ψ,R) |= post(ϕ,R) ∨ post(ψ,R) by applying ∀ introduction

1. assume (post(ϕ,R) ∨ post(ψ,R))

2. (∃v” : ϕ(v)[v”/v] ∧R(v, v′)[v”/v][v/v′]) ∨ (∃v” : ψ(v)[v”/v] ∧R(v, v′))[v”/v][v/v′]) by reducing post into its definition

3. ∃v” : (ϕ(v”) ∨ ψ(v”)) ∧R(v”, v)) by collecting terms over the existential quantifier and R

4. post(ϕ ∨ ψ,R) by rewriting back in terms of post

5. therefore, (post(ϕ,R) ∨ post(ψ,R)) |= post(ϕ ∨ ψ,R)

6. ∀ϕ∀ψ∀R : (post(ϕ,R) ∨ post(ψ,R)) |= post(ϕ ∨ ψ,R) by applying ∀ introduction

3

Mini-test 4

Q1. Prove that α is monotonic, i.e., ∀φ∀ψ : (φ |= ψ)→ (α(φ) |= α(ψ)).

Refer to Homework 4, Exercise 2, bullet point 2.

Q2. Given the set of predicates P = {x ≥ 5, x ≤ 10, x = 6}, compute

1. post(x = 6, x′ = x+ 1) = (x=7).

2. α(x ≥ 6) = (x ≥ 5).

3. post#(x = 6, x′ = x+ 1) = (x ≥ 5 ∧ x ≤ 10).

Q3. Given a program text.

int x;

A: if (x>0) {

B: while(x > 0) x--;

} else {

C: x = 10;

}

D:

Given the predicates {x ≥ 0, x ≤ 10}, compute the corresponding abstract reachability tree.

Let
ϕinit(v) = (pc = A)
ρ1(v, v′) = (pc = A ∧ pc′ = B ∧ x > 0 ∧ x′ = x)
ρ2(v, v′) = (pc = A ∧ pc′ = C ∧ x ≤ 0 ∧ x′ = x)
ρ3(v, v′) = (pc = B ∧ pc′ = B ∧ x > 0 ∧ x′ = x+ 1)
ρ4(v, v′) = (pc = B ∧ pc′ = D ∧ x ≤ 0 ∧ x′ = x)
ρ5(v, v′) = (pc = C ∧ pc′ = D ∧ x′ = 10)

We start from the abstract initial state and continue applying each of the 5 transition relations on each state until no new state
is reached.
α(ϕinit(v)) = α(pc = A) = true ≡ ϕ1

post#(ϕ1, ρ1) = (x ≥ 0) ≡ ϕ2

post#(ϕ1, ρ2) = (x ≤ 10) ≡ ϕ3

post#(ϕ1, ρ3) = (x ≥ 0) ≡ ϕ2 (already reached!)
post#(ϕ1, ρ4) = (x ≤ 10) ≡ ϕ3 (already reached!)
post#(ϕ1, ρ5) = (x ≥ 0 ∧ x ≤ 10) ≡ ϕ4

We continue to do so for the remaining states ϕ2, ϕ3, and ϕ4. But since there is no new state reached the abstract reachability
computation stops here. The resulting tree is given below.

ϕ1 ≡ true

ϕ2 ≡ (x ≥ 0)ϕ3 ≡ (x ≤ 10) ϕ4 ≡ (x ≥ 0 ∧ x ≤ 10)

ρ1, ρ3ρ2, ρ4 ρ5

4

Mini-test 5

Q1. Given the program Prog = (V, ϕinit , ϕerror , {ρ1, ρ2}) where:

ϕinit = (pc = `1 ∧ x = 0 ∧ y = 0)

ρ1 = (pc = `1 ∧ pc′ = `2 ∧ x′ = x+ 5 ∧ y′ = y)

ρ2 = (pc = `2 ∧ pc′ = `3 ∧ x′ = x+ 1 ∧ y′ = x′)

ϕerror = (pc = `3 ∧ y ≤ 5)

1. For the set of predicates P = {pc = `1, pc = `2, pc = `3, x ≥ 0, y ≥ 5}, show that the abstraction along the path ρ1ρ2
reaches an error state, i.e., post#(post#(α(ϕinit), ρ1), ρ2) ∧ ϕerror 6|= false.

α(ϕinit) = (pc = `1 ∧ x ≥ 0)

post#(α(ϕinit), ρ1) = post#(pc = `1 ∧ x ≥ 0, pc = `1 ∧ pc′ = `2 ∧ x′ = x+ 5 ∧ y′ = y)

= post#(pc = `2 ∧ x ≥ 5) = (pc = `2 ∧ x ≥ 0)

post#(post#(α(ϕinit), ρ1), ρ2) = post#(pc = `2 ∧ x ≥ 0, pc = `2 ∧ pc′ = `3 ∧ x′ = x+ 1 ∧ y′ = x′)

= post#(pc = `3 ∧ x ≥ 1 ∧ y = x) = (pc = `3 ∧ x ≥ 0)

post#(post#(α(ϕinit), ρ1), ρ2) ∧ ϕerror = (pc = `3 ∧ x ≥ 0) ∧ (pc = `3 ∧ y ≤ 5)

= (pc = `3 ∧ x ≥ 0 ∧ y ≤ 5)

(pc = `3 ∧ x ≥ 0 ∧ y ≤ 5) is satisfiable which implies that (pc = `3 ∧ x ≥ 0 ∧ y ≤ 5) 6|= false.

2. Check if the path without abstraction reaches an error state.

ϕinit = (pc = `1 ∧ x = 0 ∧ y = 0)

post(ϕinit , ρ1) = post(pc = `1 ∧ x = 0 ∧ y = 0, pc = `1 ∧ pc′ = `2 ∧ x′ = x+ 5 ∧ y′ = y)

= (pc = `2 ∧ x = 5 ∧ y = 0)

post(post(ϕinit , ρ1), ρ2) = post(pc = `2 ∧ x = 5 ∧ y = 0, pc = `2 ∧ pc′ = `3 ∧ x′ = x+ 1 ∧ y′ = x′)

= (pc = `3 ∧ x = 6 ∧ y = x)

post(post(ϕinit , ρ1), ρ2) ∧ ϕerror = (pc = `3 ∧ x = 6 ∧ y = x) ∧ (pc = `3 ∧ y ≤ 5)

= (pc = `3 ∧ x = 6 ∧ y = x ∧ y ≤ 5)

(pc = `3 ∧ x = 6 ∧ y = x ∧ y ≤ 5) is unsatisfiable which implies that (pc = `3 ∧ x = 6 ∧ y = x ∧ y ≤ 5) |= false.

3. Refine the set of predicates by finding ψ1, ψ2, and ψ3 such that ϕinit |= ψ1, ψ1 ∧ ρ1 |= ψ2, ψ2 ∧ ρ2 |= ψ3, and ψ3 ∧ϕerror |=
false.

We will apply interpolation to refine the set. Since we have two transition relations involved in reaching the error, we have
three instances of interpolation to solve.

(a) Let δ1(v) = ∃v′v′′(ρ1(v, v′) ◦ ρ2(v′, v′′)) ∧ ϕerr (v′′), we find ψ1(v) such that:
ϕinit(v) |= ψ1(v)
ψ1(v) ∧ δ1(v) |= false

δ1(v) = ∃v′v′′(ρ1(v, v′) ◦ ρ2(v′, v′′)) ∧ ϕerr (v′′)

= ∃v′v′′(pc = `1 ∧ pc′ = `2 ∧ x′ = x+ 5 ∧ y′ = y) ∧ (pc′ = `2 ∧ pc′′ = `3 ∧ x′′ = x′ + 1 ∧ y′′ = x′′) ∧ (pc′′ = `3 ∧ y′′ ≤ 5)

= ∃v′′(pc = `1 ∧ x′′ − 1 ≤ x+ 5 ∧ y′′ = x′′ ∧ pc′′ = `3) ∧ (pc′′ = `3 ∧ y′′ ≤ 5)

= (pc = `1 ∧ x ≤ −1)

After replacing ϕinit(v) and δ1(v) in the equation above, we get:

(pc = `1 ∧ x = 0 ∧ y = 0) |= ψ1(v)
ψ1(v) ∧ (pc = `1 ∧ x ≤ −1) |= false

and, then we find ψ1(v) as an interpolant of the formulas (pc = `1 ∧ x = 0 ∧ y = 0) and (pc = `1 ∧ x ≤ −1) .

To make things simpler, we can leave out pc since it has the same value in both formulas. Then, we have the simplified
task of finding interpolant for (x = 0 ∧ y = 0) and (x ≤ −1). We can easily see that one interpolant is x ≥ 0.
Therefore, we have ψ1(v) = (x ≥ 0). Since we have it already in the set of predicates, the set remains the same.

5

(b) Let δ2(v) = ∃v′ρ2(v, v′) ∧ ϕerr (v′), we find ψ2(v) such that:
∃v′(ψ1(v′) ∧ ρ1(v′, v)) |= ψ2(v)
ψ2(v) ∧ δ2(v) |= false

δ2(v) = ∃v′ρ2(v, v′) ∧ ϕerr (v′)

= ∃v′(pc = `2 ∧ pc′ = `3 ∧ x′ = x+ 1 ∧ y′ = x′) ∧ (pc′ = `3 ∧ y′ ≤ 5)

= (pc = `2 ∧ x ≤ 4)

∃v′(ψ1(v′) ∧ ρ1(v′, v)) = (x′ ≥ 0) ∧ (pc′ = `1 ∧ pc = `2 ∧ x = x′ + 5 ∧ y = y′)

= (pc = `2 ∧ x ≥ 5)

After replacing these two formulas in the equation above, we get:

(pc = `2 ∧ x ≥ 5) |= ψ2(v)
ψ2(v) ∧ (pc = `2 ∧ x ≤ 4) |= false

and, then we find ψ2(v) as an interpolant of the formulas (pc = `2 ∧ x ≥ 5) and (pc = `2 ∧ x ≤ 4) .

Like we did for the first case, we can leave out pc since it has the same value in both formulas. Then, we have the
simplified task of finding interpolant for (x ≥ 5) and (x ≤ 4). One such interpolant is x ≥ 5.
Therefore, we have ψ2(v) = (x ≥ 5), and we refine the set of predicates into P = {pc = `1, pc = `2, pc = `3, x ≥ 0, y ≥
5, x ≥ 5} by adding ψ2(v) into P .

(c) In this last step, we simply compute ψ3 such that:
∃v′(ψ2(v′) ∧ ρ2(v′, v)) |= ψ3(v)
ψ3(v) ∧ ϕerr (v) |= false

∃v′(ψ2(v′) ∧ ρ2(v′, v)) = (x′ ≥ 5) ∧ (pc′ = `2 ∧ pc = `3 ∧ x = x′ + 1 ∧ y = x)

= (pc = `3 ∧ x ≥ 6 ∧ y ≥ 6)

After replacing this formula and ϕerr (v) in the equation above, we get:
(pc = `3 ∧ x ≥ 6 ∧ y ≥ 6) |= ψ3(v)
ψ3(v) ∧ (pc = `3 ∧ y ≤ 5) |= false

and, then we find ψ3(v) as an interpolant of the formulas (pc = `3 ∧ x ≥ 6 ∧ y ≥ 6) and (pc = `3 ∧ y ≤ 5) .

We also leave out pc since it has the same value in both formulas. Then, we have the simplified task of finding
interpolant for (x ≥ 6 ∧ y ≥ 6) and (y ≤ 5). One such interpolant is y ≥ 6.
Therefore, we have ψ3(v) = (y ≥ 6), and we refine the set of predicates into P = {pc = `1, pc = `2, pc = `3, x ≥ 0, y ≥
5, x ≥ 5, y ≥ 6} by adding ψ3(v) into P .

Therefore, we have refined P such that P = {pc = `1, pc = `2, pc = `3, x ≥ 0, y ≥ 5, x ≥ 5, y ≥ 6}.

4. Check that post#(post#(α(ϕinit), ρ1), ρ2) |= false when using the refined abstraction function.

α(ϕinit) = (pc = `1 ∧ x ≥ 0)

post#(α(ϕinit), ρ1) = post#(pc = `1 ∧ x ≥ 0, pc = `1 ∧ pc′ = `2 ∧ x′ = x+ 5 ∧ y′ = y)

= post#(pc = `2 ∧ x ≥ 5) = (pc = `2 ∧ x ≥ 5)

post#(post#(α(ϕinit), ρ1), ρ2) = post#(pc = `2 ∧ x ≥ 5, pc = `2 ∧ pc′ = `3 ∧ x′ = x+ 1 ∧ y′ = x′)

= post#(pc = `3 ∧ x ≥ 6 ∧ y ≥ 6) = (pc = `3 ∧ x ≥ 5 ∧ y ≥ 6)

post#(post#(α(ϕinit), ρ1), ρ2) ∧ ϕerror = (pc = `3 ∧ x ≥ 5 ∧ y ≥ 6) ∧ (pc = `3 ∧ y ≤ 5)

= (pc = `3 ∧ x ≥ 5 ∧ y ≥ 6 ∧ y ≤ 5)

(pc = `3 ∧ x ≥ 5 ∧ y ≥ 6 ∧ y ≤ 5) is unsatisfiable which implies that (pc = `3 ∧ x ≥ 5 ∧ y ≥ 6 ∧ y ≤ 5) |= false.

6

Q2. Find an interpolant for x ≥ 5 ∧ z ≥ y + x and z ≤ y + a ∧ a ≤ 4.

We compute the interpolant applying the algorithm:
Let φ = (x ≥ 5∧ z ≥ y+ x) and ψ = (z ≤ y+ a∧ a ≤ 4). After arranging and rewritting the formulas to only use the inequality
≤, we get φ = (−x ≤ −5∧x+y− z ≤ 0) and ψ = (−y+ z−a ≤ 0∧a ≤ 4). We represent the formulas in matrix form as follows:

(
−1 0 0 0
1 1 −1 0

)
x
y
z
a

 ≤ (−5
0

)
(for φ)

(
0 −1 1 −1
0 0 0 1

)
x
y
z
a

 ≤ (0
4

)
(for ψ)

By using these matrices, we find a 1× 4 matrix (λ µ) where λ and µ themselves are 1× 2 matrices such that:

∃λ ∃µ :

λ ≥ 0 ∧ µ ≥ 0 ∧

(
λ µ

)
−1 0 0 0
1 1 −1 0
0 −1 1 −1
0 0 0 1

 = 0 ∧
(
λ µ

)
−5
0
0
4

 ≤ −1

One solution can be (λ µ) = (1 1 1 1). We then compute the interpolant by applying λ which is (1 1) on the coeficient matrix
of φ. i.e.

i =
(
λ
)(−1 0 0 0

1 1 −1 0

)
=
(
0 1 −1 0

)
i0 =

(
λ
)(−5

0

)
= −5

Therefore, the interpolant we computed is:

ix ≤ i0 ≡
(
0 1 −1 0

)
x
y
z
a

 ≤ −5 ≡ (y − z ≤ −5)

7

Mini-test 6 Given the program text:

int x;

int f(int a) {

int b;

f1: b = a+b;

f2: if (a>=0)

f3: { f(a-1);}

else

f4: { return b+x; }

f5: }

void main(void) {

int n, m;

assume(x>=0);

m1: n = f(x);

m2: m = f(-x);

m3: assert(m==n);

}

Q1. Give global variables of the program and the local variables of each procedure.

Globals: x, ret
Locals of f : a, b
Locals of main: m,n

Q2. Give a control flow graphs for each procedure.

f1

f2

f3

f4

f5

step

step
step

ret
ret

call

loc

m1

m2

m3

merrmsafe

local

local

stepstep

Q3. For procedure f , give the transition relations stepf , callf,f , retf , and localf .

• stepf =
(pcf = f1 ∧ b′ = a+ b ∧ a′ = a ∧ x′ = x ∧ pc′f = f2) ∨
(a ≥ 0 ∧ pcf = f2 ∧ b′ = b ∧ a′ = a ∧ x′ = x ∧ pc′f = f3) ∨
(a < 0 ∧ pcf = f2 ∧ b′ = b ∧ a′ = a ∧ x′ = x ∧ pc′f = f4)

• callf,f = (pcf = f3 ∧ pc′f = f1 ∧ a′ = a− 1)

• retf = (pcf = f3 ∧ ret′ = ret) ∨ (pcf = f4 ∧ ret′ = b+ x)

• localf = true

Q4. For procedure main, give the transition relations stepmain , callmain,f , retmain , and localmain .

• stepmain =
(pcmain = m3 ∧m = n ∧m′ = m ∧ n′ = n ∧ x′ = x ∧ pc′main = msafe) ∨
(pcmain = m3 ∧m 6= n ∧m′ = m ∧ n′ = n ∧ x′ = x ∧ pc′main = merr)

• callmain,f = (pcmain = m1 ∧ pcf = f1 ∧ a′ = x) ∨
(pcmain = m2 ∧ pcf = f1 ∧ a′ = ¬x)

• retf = (pcmain = m2 ∧ n′ = ret) ∨ (pcmain = m3 ∧m′ = ret)

8

• localf = (pcmain = m1 ∧ pc′main = m2 ∧m′ = m) ∨
(pcmain = m2 ∧ pc′main = m3 ∧ n′ = n)

Q5. We consider a call site where p calls q. Show rules that present changes to the summaries of p and q respectively:

1. Summeraization inference rule for summp

((g, lp), (g′, l′p)) ∈ summp ((g′, l′p, lq)) |= callp,q(VG, Vp, Vq)
((g′, lq), (g′′, l′q)) ∈ summq (g′′, l′q, q

′′′) |= retq(VG, Vq, V
′
G) (l′p, l

′′
p) |= locp(Vp, V

′
p)

((g, lp), (g′′′, l′′p)) ∈ summp

(Or as entailment)
summp((VG, Vp), (V ′

G, V
′
p)) ∧ callp,q((V ′

G, V
′
p , Vq)) ∧ summq((V ′

G, Vq), (V ′′
G , V

′
q)) ∧

retq(V ′′
G , V

′
q , V

′′′
G) ∧ locp(V ′

p , V
′′
p) |= summp((VG, Vp), (V ′′′

G , V ′′
p))

2. Summeraization inference rule for summq

((g, lp), (g′, l′p)) ∈ summp ((g′, l′p, lq)) |= callp,q(VG, Vp, Vq)

((g′, lq), (g′, lq)) ∈ summq

(Or as entailment)
summp((VG, Vp), (V ′

G, V
′
p)) ∧ callp,q((V ′

G, V
′
p , Vq)) |= summq((V ′

G, Vq), (V ′
G, Vq))

9

Mini-test 7

Q1 Given a mutual exclusion algorithm for 2 threads:

initially turn∈ {1, 2} ∧Q1 = Q2 = false
// Thread 1: // Thread 2:

A: Q1:=true; A: Q2:=true;

B: turn:=2; B: turn:=1;

C: await 〈¬Q2 ∨ turn = 1〉; C: await 〈¬Q1 ∨ turn = 2〉;
D: Q1 := false; goto A; D: Q2 := false; goto A;

1. Is mutual exclusion for locations D still satisfied? Why or why not?

The strongest inductive invariant is:
I = (PC1 = A ∧ PC2 = A ∧ ¬Q1 ∧ ¬Q2) ∨ (PC1 = B ∧ PC2 = A ∧Q1 ∧ ¬Q2)∨

(PC1 = A ∧ PC2 = B ∧ ¬Q1 ∧Q2) ∨ (PC1 = C ∧ PC2 = A ∧Q1 ∧ ¬Q2 ∧ turn = 2)∨
(PC1 = B ∧ PC2 = B ∧Q1 ∧Q2) ∨ (PC1 = A ∧ PC2 = C ∧ ¬Q1 ∧Q2 ∧ turn = 1)∨
(PC1 = D ∧ PC2 = A ∧Q1 ∧ ¬Q2 ∧ turn = 2) ∨ (PC1 = C ∧ PC2 = B ∧Q1 ∧Q2 ∧ turn = 2)∨
(PC1 = B ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 1) ∨ (PC1 = A ∧ PC2 = D ∧ ¬Q1 ∧Q2 ∧ turn = 1)∨
(PC1 = D ∧ PC2 = B ∧Q1 ∧Q2 ∧ turn = 2) ∨ (PC1 = C ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 1)∨
(PC1 = C ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 2) ∨ (PC1 = B ∧ PC2 = D ∧Q1 ∧Q2 ∧ turn = 1)∨
(PC1 = D ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 1) ∨ (PC1 = C ∧ PC2 = D ∧Q1 ∧Q2 ∧ turn = 2)∨

and, we can see that there is no any state that satisfies (PC1 = D∧PC2 = D). To access location D simultaneously, both
(¬Q2 ∨ turn = 1) and (¬Q1 ∨ turn = 2) must hold. But, we know that Q1 = Q2 = true when both threads want to access
location D. Therefore, to access the location (turn = 1 ∧ turn = 2) must hold, which can never be satisfied.

2. Compute the number of states of the protocol.

(Hint: State = Shared×
|Tid|
Π
i=1

Locali).

There are three shared variables, Q1, Q2 and turn, each with two possible values, and one local variable PC with four
possible values for each thread.
|States| = (2× 2× 2)× 4× 4 = 128

Q2 Given a mutual exclusion algorithm for 2 threads:

initially t=s=0;

// Thread 1: // Thread 2:

while(true){ while(true){
A: a=t; A: b=t;

t:=t+1; t:=t+1;

B: await <a=s>; B: await <b=s>;

C: //critical section C: //critical section

s:=s+1; s:=s+1;

} }

and, an inductive invariant:
I = (pc1 = A ∧ pc2 = A ∧ t = s) ∨ (D1(v))

(pc1 = A ∧ pc2 = B ∧ t = s+ 1 ∧ b = t− 1) ∨ (D2(v))
(pc1 = A ∧ pc2 = C ∧ t = s+ 1 ∧ b = s) ∨ (D3(v))
(pc1 = B ∧ pc2 = A ∧ t = s+ 1 ∧ a = t− 1) ∨ (D4(v))
(pc1 = B ∧ pc2 = B ∧ t = s+ 2 ∧ a = t− 1 ∧ b = t− 2) ∨ (D5(v))
(pc1 = B ∧ pc2 = B ∧ t = s+ 2 ∧ a = t− 2 ∧ b = t− 1) ∨ (D6(v))
(pc1 = B ∧ pc2 = C ∧ t = s+ 2 ∧ a = t− 1 ∧ b = s) ∨ (D7(v))
(pc1 = C ∧ pc2 = B ∧ t = s+ 2 ∧ a = s ∧ b = t− 1) ∨ (D8(v))
(pc1 = C ∧ pc2 = A ∧ t = s+ 1 ∧ a = s) (D9(v))

10

Prove the stability of I under the transitions:
(for the sake of reference, each disjunct of the invariant is given a name).

1. A→ B of thread1

We first represent the transition formally as ρ(v, v′) = (pc1 = A ∧ pc′1 = B ∧ a′ = t ∧ t′ = t+ 1 ∧ b′ = b ∧ pc′2 = pc2), and
then apply post over the inductive invariant to check if the computed states are in the invariant or not. This transition is
appicable only on the disjuncts D1(v), D2(v), and D3(v).

post(D1, ρ) = post(pc1 = A ∧ pc2 = A ∧ t = s, pc1 = A ∧ pc′1 = B ∧ a′ = t ∧ t′ = t+ 1 ∧ b′ = b ∧ pc′2 = pc2)

= (pc1 = B ∧ pc2 = A ∧ t = s+ 1 ∧ a = t− 1) |= D4

post(D2, ρ) = post(pc1 = A ∧ pc2 = B ∧ t = s+ 1 ∧ b = t− 1, pc1 = A ∧ pc′1 = B ∧ a′ = t ∧ t′ = t+ 1 ∧ b′ = b ∧ pc′2 = pc2)

= (pc1 = B ∧ pc2 = B ∧ t = s+ 2 ∧ a = t− 1 ∧ b = t− 2) |= D5

post(D3, ρ) = post(pc1 = A ∧ pc2 = C ∧ t = s+ 1 ∧ b = s, pc1 = A ∧ pc′1 = B ∧ a′ = t ∧ t′ = t+ 1 ∧ b′ = b ∧ pc′2 = pc2)

= (pc1 = B ∧ pc2 = C ∧ t = s+ 2 ∧ a = t− 1 ∧ b = s) |= D7

We can see that application of this transition results in the states that are already in the inductive invariant. Therefore,
the invariant I is stable under the transition.

2. C → A of thread2

The transition is represented formally as ρ(v, v′) = (pc2 = C ∧ pc′2 = A ∧ s′ = s+ 1 ∧ pc′1 = pc1 ∧ a′ = a ∧ b′ = b), and it is
applicable on the disjuncts D3(v), and D7(v).

post(D3, ρ) = post(pc1 = A ∧ pc2 = C ∧ t = s+ 1 ∧ b = s, pc2 = C ∧ pc′2 = A ∧ s′ = s+ 1 ∧ pc′1 = pc1 ∧ a′ = a ∧ b′ = b)

= (pc1 = A ∧ pc2 = A ∧ t = s ∧ b = s− 1) |= D1

post(D7, ρ) = post(pc1 = B ∧ pc2 = C ∧ t = s+ 2 ∧ a = t− 1 ∧ b = s, pc2 = C ∧ pc′2 = A ∧ s′ = s+ 1 ∧ pc′1 = pc1∧
a′ = a ∧ b′ = b)

= (pc1 = B ∧ pc2 = A ∧ t = s+ 1 ∧ a = t− 1 ∧ b = s− 1) |= D4

Here also the transition results in the states that are already in the invariant I. Therefore, the invariant I is stable under
this transition as well.

11

Mini-test 8
In all the exercises, if you use abbreviations, define them upfront. The symbol P denotes the powerset.

Q1. Consider the two-threaded program given by the following code:

initially x=0

// Thread 1: // Thread 2:

A: 〈 await x=0; x:=1 〉 A: 〈 await x=0; x:=2 〉
B: B:

Q1.1. Give a suitable formal representation of the above program.

Tid = {1, 2} ,

Shared = ({x} 7→ {0, 1, 2}) ,

Local1 = ({pc1} 7→ {A,B}) ,

Local2 = ({pc2} 7→ {A,B}) ,

→1 = {(([x 7→ 0], [pc1 7→ A]), ([x 7→ 1], [pc1 7→ B]))} ,

→2 = {(([x 7→ 0], [pc2 7→ A]), ([x 7→ 2], [pc2 7→ B]))} ,

init = {([x 7→ 0], [pc1 7→ A], [pc2 7→ A])} .

Q1.2. Prove mutual exclusion for locations B (i.e., in any reachable state the threads cannot simultaneously have control
flow location B) by thread-modular verification. For your reference, the thread-modular inference rules are

(INIT)
t ∈ Tid (g, l) ∈ init

(g, lt) ∈ Rt

(STEP)
t ∈ Tid (g, l) ∈ Rt (g, l)→t (g′, l′)

(g′, l′) ∈ Rt (g, g′) ∈ Gt

(ENV)
t ∈ Tid (g, l) ∈ Rt t̂ ∈ Tid \ {t} (g, g′) ∈ Gt̂

(g′, l) ∈ Rt

and the multithreaded Cartesian concretization is

γmc :
∏

t∈Tid

P(Shared× Localt) → State ,

γmc((St)t∈Tid) = {(g, l) ∈ State | ∀ t ∈ Tid: (g, lt) ∈ St} .

R1 = {([x 7→ 0], [pc1 7→ A]), ([x 7→ 1], [pc1 7→
B]), ([x 7→ 2], [pc1 7→ A])} ,

R2 = {([x 7→ 0], [pc2 7→ A]), ([x 7→ 2], [pc2 7→
B]), ([x 7→ 1], [pc2 7→ A])} ,

G1 = {([x 7→ 0], [x 7→ 1])} , G2 = {([x 7→ 0], [x 7→ 2])} ,

Reach# = γmc((Rt)t∈Tid) = {([x 7→ 0], [pc1 7→ A], [pc2 7→ A]), ([x 7→ 1], [pc1 7→ B], [pc2 7→ A]), ([x 7→ 2], [pc1 7→ A], [pc2 7→ B])}
It can be seen that there is no reachable state where both threads are at location B.

12

Q2. Consider an arbitrary multithreaded program. Let State be the set of states of the program and → be its transition
relation. Let post be the successor operator

post : P(State) → P(State) ,
post(Q) = {q′ | ∃ q ∈ Q : q → q′} .

Let f : P(State)→ P(State), f(Q) = init ∪ post(Q).

Q2.1. Show that f is monotone with respect to inclusion.
Formally, show that that for all Q,Q′ ∈ P(State) we have Q ⊆ Q′ ⇒ f(Q) ⊆ f(Q′).

Let Q ⊆ Q′. We will show that f(Q) is a subset of f(Q′). Let q′ ∈ f(Q). If q′ ∈ init, then q′ ∈ f(Q′). Otherwise, q′ ∈ post(Q),
so there is q ∈ Q such that q → q′. Then, q ∈ Q′. q′ ∈ post(Q′) ⊆ f(Q′).

Q2.2. Does f have a fixpoint? Formally, is there Q ∈ P(State) such that f(Q) = Q?

Yes, since monotone maps on a complete lattice always have fixpoints. And, (P(State),⊆) is a complete lattice.

13

Mini-test 9
In all the exercises, if you use abbreviations, define them upfront. ˜x denotes arithmetic negation.

Q1 Given a typing environment T := {abs := int → int}, infer the type using the inference rules in the handout (construct
the tree):

let val x = ~3 in abs x end

T |- ~ : int -> int T |- 3 : int T, {x : int} |- abs : int -> int T, {x : int} |- x : int

------------------------------------ ---

T |> val x = ~ 3 : T, {x : int} T, {x : int} |- abs x : int

--

T |- let val x = ~3 in abs x end : int

Q2 Which sequence of typing environments is obtained by typing the following declarations starting with the empty typing
environment:

(a) val b = true

{b : bool}

(b) val x = let fun square x = x*x in square 5 end

{b : bool, x : int}

Q3 Which sequence of value environments is obtained by evaluating the following declarations starting with the empty value
environment:

(a) val y = 3

[y := 3]

(b) fun max x = if x > y then true else false

[y := 3, max := (fun max x = if x > y then true else false, [y := 3])]

(c) val y = max y

[y := false, max := (fun max x = if x > y then true else false, [y := 3])]

(d) fun fact y = if y < 1 then 1 else y*fact(y - 1)

[y := false, max := (fun max x = if x > y then true else false, [y := 3]), fact = (fun fact y = if y < 1 then 1 else
y*fact(y - 1), [])]

14

Q4 Formalize as a refinement type:

f is a function that takes as input a positive integer x and returns an integer that is greater than or equals the value of x,
but is smaller than the value of identifier y.

f : (x : {v : int|v > 0}− > {v : int|v ≥ x ∧ v < y})

Q5 Given a value environment V := [y := 10], evaluate using the inference rules in the handout (construct the tree):

let val z = y*y in if z>y then true else false end

V, [z:=100] |= z :100 V, [z :=100] |= y : 10

--

V |= y : 10 V |= y : 10 V, [z :=100] |= z > y : true V, [z :=100] |= true : true

-------------------------------- --

V |>> val z = y*y : V, [z :=100] V, [z :=100] |= if z>y then true else false : true

V |= let val z = y*y in if z>y then true else false end : true

15

