
Model Checking

Lecture 3 (April 30th)

TUM

Reachability computation

Let ϕ be a formula over V and let ρ be a formula over V and V ′. We define a
post-condition function post as follows.

post(ϕ, ρ) = ∃V ′′ : ϕ[V ′′/V] ∧ ρ[V ′′/V][V/V ′] (1)

An application post(ϕ, ρ) computes the image of the set ϕ under the relation ρ.
Furthermore, for a natural number n we define postn(ϕ, ρ) as follows.

postn(ϕ, ρ) =

{
ϕ if n = 0

post(postn−1(ϕ, ρ), ρ) otherwise
(2)

By postn(ϕ, ρ) we represent the n-fold application of the post function to ϕ
with respect to ρ. We observe the following useful property of the post-condition
function.

∀ϕ ∀ρ1 ∀ρ2 : post(ϕ, ρ1 ∨ ρ2) = (post(ϕ, ρ1) ∨ post(ϕ, ρ2))

∀ϕ1 ∀ϕ2 ∀ρ : post(ϕ1 ∨ ϕ2, ρ) = (post(ϕ1, ρ) ∨ post(ϕ2, ρ))

(3)

This property states that the post-condition computation distributes over dis-
junction wrt. each argument.

Example 1. For example, given the transition relation ρ2 and the program vari-
ables V = (pc, x, y, z) from our example program, we compute the following post
condition.

post(at `2 ∧ y ≥ z, ρ2)

= (∃V ′′ : (at `2 ∧ y ≥ z)[V ′′/V] ∧ ρ2[V ′′/V][V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc′ = `2 ∧ x′′ + 1 ≤ y′′ ∧ x′ = x′′ + 1 ∧
y′ = y′′ ∧ z′ = z′′)[V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

We compute the 2-fold application by reusing the above result.

post2(at `2 ∧ y ≥ z, ρ2)

= post(post(at `2 ∧ y ≥ z, ρ2), ρ2)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y, ρ2)

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′ ∧ x′′ ≤ y′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x− 1 ≤ y ∧ x ≤ y)

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

�

We characterize ϕreach using post as follows.

ϕreach = ϕinit ∨ post(ϕinit , ρR) ∨ post(post(ϕinit , ρR), ρR) ∨ . . .

=
∨

i≥0 post
i(ϕinit , ρR)

(4)

The above disjunction (over every number of applications of the post-condition
function) ensures that all reachable states are taken into consideration.

Example 2. We compute ϕreach for our example program. We first obtain the
post-condition after applying the transition relation of the program once.

post(at `1, ρR)

= (post(at `1, ρ1) ∨ post(at `1, ρ2) ∨ post(at `1, ρ3) ∨
post(at `1, ρ4) ∨ post(at `1, ρ5))

= post(at `1, ρ1)

= (at `2 ∧ y ≥ z)

Next, we obtain the post-condition for one more application.

post(at `2 ∧ y ≥ z, ρR)

= (post(at `2 ∧ y ≥ z, ρ2) ∨ post(at `2 ∧ y ≥ z, ρ3))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y)

We repeat the application step once again.

post(at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y, ρR)

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρR) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρR))

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ2) ∨ post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ3) ∨
post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ4) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ5))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y)

2

So far, by iteratively applying the post-condition function to ϕinit we obtained
the following disjunction.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

We present this disjunction in a logically equivalent, simplified form as follows.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

Any further application of the post-condition function does not produce any
additional disjuncts. Hence, ϕreach is the above disjunction. �

Inductive Safety Arguments

An inductive invariant ϕ contains the intial states and is closed under succes-
sors. Formally, an inductive invariant is a formula over the program variables
that represents a superset of the initial program states and is closed under the
application of the post function wrt. the relation ρR, i.e.,

ϕinit |= ϕ and post(ϕ, ρR) |= ϕ .

A program is safe if there exists an inductive invariant ϕ that does not contain
any error states, i.e., ϕ ∧ ϕerr |= false.

Example 3. For our example program, the weakest inductive invariant consists
of the set of all states and is represented by the formula true. The strongest
inductive invariant was obtained in Example 2 and is shown below.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ (at `4 ∧ y ≥ z ∧ x ≥ y)

The strongest inductive invariant does not contain any error states. We observe
that a slightly weaker inductive invariant below also proves the safety of our
examples.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ at `4

�

3

Computation of reachable program states requires iterative application of
the post-condition function on the initial program states, see Equation (4). The
iteration finishes when no new program states are discovered. Unfortunately,
such an iteration process does not terminate in finite time.

Example 4. For example, we consider the iterative computation of the set of
states that is reachable from at `2 ∧ x ≤ z by applying the transition ρ2 of our
example program. We obtain the following sequence of post-conditions (where
V = (pc, x, y, z)).

post(at `2 ∧ x ≤ z, ρ2) = (∃V ′′ : (pc′′ = `2 ∧ x′′ ≤ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧
x = x′′ + 1 ∧ y = y′′ ∧ z = z′′))

= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y)

post2(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 2 ≤ z ∧ x ≤ y)

post3(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 3 ≤ z ∧ x ≤ y)

. . .

postn(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− n ≤ z ∧ x ≤ y)

In this sequence, we observe that at each iteration yields a set of states that
contains states not discovered before. For example, the set of states reachable
after applying the post-condition function once is not included in the original
set, i.e.,

(at `2 ∧ x− 1 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x ≤ z) .

The set of states reachable after applying the post-condition function twice is
not included in the union of the above two sets, i.e.,

(at `2 ∧ x− 2 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y ∨ at `2 ∧ x ≤ z) .

Furthermore, we observe that the set of states reachable after n-fold application
of post , where n ≥ 1, still contains previously unreached states, i.e.,

∀n ≥ 1 : (at `2 ∧ x− n ≤ z ∧ x ≤ y)

6|= (at `2 ∧ x ≤ z ∨
∨

1≤i<n(at `2 ∧ x− i ≤ z ∧ x ≤ y)) .

�

4

