Model Checking

Lecture 3 (April 30th)
TUM

Reachability computation

Let φ be a formula over V and let ρ be a formula over V and V^{\prime}. We define a post-condition function post as follows.

$$
\begin{equation*}
\operatorname{post}(\varphi, \rho)=\exists V^{\prime \prime}: \varphi\left[V^{\prime \prime} / V\right] \wedge \rho\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \tag{1}
\end{equation*}
$$

An application $\operatorname{post}(\varphi, \rho)$ computes the image of the set φ under the relation ρ. Furthermore, for a natural number n we define $\operatorname{post}^{n}(\varphi, \rho)$ as follows.

$$
\operatorname{post}^{n}(\varphi, \rho)= \begin{cases}\varphi & \text { if } n=0 \tag{2}\\ \operatorname{post}\left(\text { post }^{n-1}(\varphi, \rho), \rho\right) & \text { otherwise }\end{cases}
$$

By $\operatorname{post}^{n}(\varphi, \rho)$ we represent the n-fold application of the post function to φ with respect to ρ. We observe the following useful property of the post-condition function.

$$
\begin{align*}
& \forall \varphi \forall \rho_{1} \forall \rho_{2}: \operatorname{post}\left(\varphi, \rho_{1} \vee \rho_{2}\right)=\left(\operatorname{post}\left(\varphi, \rho_{1}\right) \vee \operatorname{post}\left(\varphi, \rho_{2}\right)\right) \tag{3}\\
& \forall \varphi_{1} \forall \varphi_{2} \forall \rho: \operatorname{post}\left(\varphi_{1} \vee \varphi_{2}, \rho\right)=\left(\operatorname{post}\left(\varphi_{1}, \rho\right) \vee \operatorname{post}\left(\varphi_{2}, \rho\right)\right)
\end{align*}
$$

This property states that the post-condition computation distributes over disjunction wrt. each argument.

Example 1. For example, given the transition relation ρ_{2} and the program variables $V=(p c, x, y, z)$ from our example program, we compute the following post condition.

$$
\begin{aligned}
& \operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{2}\right) \\
&=\left(\exists V^{\prime \prime}:\left(a t_{-} \ell_{2} \wedge y \geq z\right)\left[V^{\prime \prime} / V\right] \wedge \rho_{2}\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]\right) \\
&=\left(\exists V^{\prime \prime}:\left(p c^{\prime \prime}=\ell_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime}\right) \wedge\right. \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x^{\prime}=x^{\prime \prime}+1 \wedge\right. \\
&\left.\left.y^{\prime}=y^{\prime \prime} \wedge z^{\prime}=z^{\prime \prime}\right)\left[V / V^{\prime}\right]\right) \\
&=\left(\exists V^{\prime \prime}:\left(p c^{\prime \prime}=\ell_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime}\right) \wedge\right. \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge p c=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge\right. \\
&\left.\left.y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right)\right) \\
&=\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y\right)
\end{aligned}
$$

We compute the 2 -fold application by reusing the above result.

$$
\begin{aligned}
& \text { post }^{2}\left(\text { at_} \ell_{2} \wedge y \geq z, \rho_{2}\right) \\
& =\operatorname{post}\left(\text { post }\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{2}\right), \rho_{2}\right) \\
& =\operatorname{post}\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{2}\right) \\
& =\left(\exists V^{\prime \prime}:\left(p c^{\prime \prime}=\ell_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime} \wedge x^{\prime \prime} \leq y^{\prime \prime}\right) \wedge\right. \\
& \quad\left(p c^{\prime \prime}=\ell_{2} \wedge p c=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge\right. \\
& \left.\left.\quad y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right)\right) \\
& =\left(p c=\ell_{2} \wedge y \geq z \wedge x-1 \leq y \wedge x \leq y\right) \\
& =\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y\right)
\end{aligned}
$$

We characterize $\varphi_{\text {reach }}$ using post as follows.

$$
\begin{align*}
\varphi_{\text {reach }} & =\varphi_{\text {init }} \vee \operatorname{post}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \tag{4}\\
& =\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)
\end{align*}
$$

The above disjunction (over every number of applications of the post-condition function) ensures that all reachable states are taken into consideration.

Example 2. We compute $\varphi_{\text {reach }}$ for our example program. We first obtain the post-condition after applying the transition relation of the program once.

$$
\begin{aligned}
\operatorname{post} & \left(a t_{-} \ell_{1}, \rho_{\mathcal{R}}\right) \\
= & \left(\operatorname{post}\left(a t_{-} \ell_{1}, \rho_{1}\right) \vee \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{2}\right) \vee \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{3}\right) \vee\right. \\
& \left.\quad \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{4}\right) \vee \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{5}\right)\right) \\
= & \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{1}\right) \\
= & \left(a t_{-} \ell_{2} \wedge y \geq z\right)
\end{aligned}
$$

Next, we obtain the post-condition for one more application.

$$
\begin{aligned}
& \text { post }\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{\mathcal{R}}\right) \\
& \quad=\left({\left.\operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{2}\right) \vee \operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{3}\right)\right)}_{\quad=\left(\text { at- } \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right)}\right.
\end{aligned}
$$

We repeat the application step once again.

$$
\begin{aligned}
& \operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{\mathcal{R}}\right) \\
&=\left(\operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{\mathcal{R}}\right)\right) \\
&=\left(\operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{2}\right) \vee \operatorname{post}\left(\text { at- } \ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{3}\right) \vee\right. \\
&\left.\quad \operatorname{post}\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{4}\right) \vee \operatorname{post}\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{5}\right)\right) \\
&=\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x=y \vee\right. \\
&\left.a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

So far, by iteratively applying the post-condition function to $\varphi_{\text {init }}$ we obtained the following disjunction.

$$
\begin{aligned}
& a t_{-} \ell_{1} \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x=y \vee \\
& a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

We present this disjunction in a logically equivalent, simplified form as follows.

$$
\begin{aligned}
& a t_{-} \ell_{1} \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \vee \\
& a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
& a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

Any further application of the post-condition function does not produce any additional disjuncts. Hence, $\varphi_{\text {reach }}$ is the above disjunction.

Inductive Safety Arguments

An inductive invariant φ contains the intial states and is closed under successors. Formally, an inductive invariant is a formula over the program variables that represents a superset of the initial program states and is closed under the application of the post function wrt. the relation $\rho_{\mathcal{R}}$, i.e.,

$$
\varphi_{\text {init }}=\varphi \quad \text { and } \quad \operatorname{post}\left(\varphi, \rho_{\mathcal{R}}\right) \models \varphi .
$$

A program is safe if there exists an inductive invariant φ that does not contain any error states, i.e., $\varphi \wedge \varphi_{\text {err }} \models$ false.

Example 3. For our example program, the weakest inductive invariant consists of the set of all states and is represented by the formula true. The strongest inductive invariant was obtained in Example 2 and is shown below.

$$
a t_{-} \ell_{1} \vee\left(a t_{-} \ell_{2} \wedge y \geq z\right) \vee\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee\left(a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y\right)
$$

The strongest inductive invariant does not contain any error states. We observe that a slightly weaker inductive invariant below also proves the safety of our examples.

$$
a t_{-} \ell_{1} \vee\left(a t_{-} \ell_{2} \wedge y \geq z\right) \vee\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee a t_{-} \ell_{4}
$$

Computation of reachable program states requires iterative application of the post-condition function on the initial program states, see Equation (4). The iteration finishes when no new program states are discovered. Unfortunately, such an iteration process does not terminate in finite time.

Example 4. For example, we consider the iterative computation of the set of states that is reachable from $a t_{-} \ell_{2} \wedge x \leq z$ by applying the transition ρ_{2} of our example program. We obtain the following sequence of post-conditions (where $V=(p c, x, y, z))$.

$$
\begin{aligned}
& \operatorname{post}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(\exists V^{\prime \prime}:\right.\left(p c^{\prime \prime}=\ell_{2} \wedge x^{\prime \prime} \leq z^{\prime \prime}\right) \wedge \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge p c=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge\right. \\
&\left.\left.x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right)\right) \\
&=\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y\right) \\
& \operatorname{post}^{2}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-2 \leq z \wedge x \leq y\right) \\
& \operatorname{post}^{3}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-3 \leq z \wedge x \leq y\right) \\
& \ldots \quad \operatorname{post}^{n}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-n \leq z \wedge x \leq y\right)
\end{aligned}
$$

In this sequence, we observe that at each iteration yields a set of states that contains states not discovered before. For example, the set of states reachable after applying the post-condition function once is not included in the original set, i.e.,

$$
\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y\right) \not \vDash\left(a t_{-} \ell_{2} \wedge x \leq z\right)
$$

The set of states reachable after applying the post-condition function twice is not included in the union of the above two sets, i.e.,

$$
\left(a t_{-} \ell_{2} \wedge x-2 \leq z \wedge x \leq y\right) \not \vDash\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y \vee a t_{-} \ell_{2} \wedge x \leq z\right)
$$

Furthermore, we observe that the set of states reachable after n-fold application of post, where $n \geq 1$, still contains previously unreached states, i.e.,

$$
\begin{aligned}
& \forall n \geq 1:\left(a t_{-} \ell_{2} \wedge x-n \leq z \wedge x \leq y\right) \\
& \quad \neq\left(a t_{-} \ell_{2} \wedge x \leq z \vee \bigvee_{1 \leq i<n}\left(a t_{-} \ell_{2} \wedge x-i \leq z \wedge x \leq y\right)\right)
\end{aligned}
$$

