Model Checking

Lecture 3 (April 30th)

TUM

Reachability computation

Let ¢ be a formula over V and let p be a formula over V and V’. We define a
post-condition function post as follows.

post(p,p) = V" oV /VIAp[V" /VIIV/V'] (1)

An application post(p, p) computes the image of the set ¢ under the relation p.
Furthermore, for a natural number n we define post™ (¢, p) as follows.

ifn=0
post™(ip, p) = {“’ 2)

post(post™ (i, p),p) otherwise

By post™(p, p) we represent the n-fold application of the post function to ¢
with respect to p. We observe the following useful property of the post-condition
function.

Vi Vp1 Vpa : post(p, p1 V p2) = (post(p, p1) V post(p, p2)) (3)
Vi1 Yo Vp @ post(p1 V w2, p) = (post(e1, p) V post(paz, p))

This property states that the post-condition computation distributes over dis-
junction wrt. each argument.

Ezample 1. For example, given the transition relation ps and the program vari-
ables V' = (pe, x, y, z) from our example program, we compute the following post
condition.

post(at_lo Ny > z, p2)

=@V (at_ly Ny > 2)[V" V]I A p V' /V][V/V])

=3V (p" =l Ny > 2") A
(pc" =la Apd' =lbaNa" +1<y" N2’ =2"+1A
y/ — y// /\ Z/ — Z//)[V/V/})

=@V (p" =l Ny >2") A
(p" =l ANpc=Lla Nz +1<y'"Nz=a"4+1A
y=y"'Nz=2"))

=(pc=lANy>zANz<y)



We compute the 2-fold application by reusing the above result.

post?(at_ly Ny > z, pa)
= post(post(at_la Ny > z,p2), p2)
=post(pc =l Ny >zANz <y, p2)
— (HV// . (pC// :€2Ay// 2 Z”/\J)H S y//) /\
(p" =laApec=LloNa" +1<y' ANz=2a"+1A
y=y"Nz=2"))
:(pc:fz/\yzz/\w—lfy/\l'fy)
=(pc=lbaNy>zANz<y)

We characterize @ eqcn using post as follows.

Preach = Pinit V Post(Pinit, pr) V p0st(post(Qinit, PR), PR) V -
= viZO pOSti(QOim't; p’R)

(4)

The above disjunction (over every number of applications of the post-condition

function) ensures that all reachable states are taken into consideration.

Ezample 2. We compute @.eqcn for our example program. We first obtain the

post-condition after applying the transition relation of the program once.

post(at_L1, pr)
= (post(at_L1,p1) V post(at_Ly, p2) V post(at_{1,p3) V
post(at_L1,psa) V post(at_£,ps))
= post(at_{1,p1)
= (at_la Ny > 2)

Next, we obtain the post-condition for one more application.

post(at_la Ny > z, pRr)
= (post(at_la Ny > z,p2) V post(at_lo Ny > z,p3))
=(at_loNy>zAx<yVatlshNy>zAz>y)

We repeat the application step once again.

post(at_Lo ANy > 2zANx <yVat_ l3ANy>2zAx>y,pRr)
= (post(at_lo Ny >z ANx <y, pr)Vpost(at_ls Ny >zANx >y, pr))
= (post(at_-bo Ny >z ANx <y,p2)Vpost(at_-bo Ny >zAx<y,p3)V
post(at_ls Ny >z ANx >y,ps)Vpost(at_bs ANy >z ANx >y, ps))
=(atboNy>zAhx<yVatlshNy>zANx=yV
at_ by Ny>zAx>y)



So far, by iteratively applying the post-condition function to ¢;,;; we obtained
the following disjunction.

at_l1 Vv

at_lo Ny >z V

at o Ny>zANz<yVatlsNy>zAzx>yV
at boNy>zANz<yVatlsNy>zAxz=yV
at_ baNy>zANz >y

We present this disjunction in a logically equivalent, simplified form as follows.

at_l1 VvV
at_lbo Ny >z V
at_bsANy>zANx>yV
at_ byNy>zANx >y

Any further application of the post-condition function does not produce any
additional disjuncts. Hence, @, eqcn is the above disjunction. O

Inductive Safety Arguments

An inductive invariant ¢ contains the intial states and is closed under succes-
sors. Formally, an inductive invariant is a formula over the program variables
that represents a superset of the initial program states and is closed under the
application of the post function wrt. the relation pg, i.e.,

Yimit = and  post(p,pr) = ¢ .

A program is safe if there exists an inductive invariant ¢ that does not contain
any error states, i.e., A Qeprr )= false.

FEzample 3. For our example program, the weakest inductive invariant consists
of the set of all states and is represented by the formula true. The strongest
inductive invariant was obtained in Example 2 and is shown below.

at- iV (at-boNy>z)V(atlbsANy>zANx>y)V(at-baNy> 2Nz >y)
The strongest inductive invariant does not contain any error states. We observe
that a slightly weaker inductive invariant below also proves the safety of our

examples.

at_ oy V(at_ o ANy>2z)V (at_bs ANy >zAx>y)Vat_ly



Computation of reachable program states requires iterative application of
the post-condition function on the initial program states, see Equation (4). The
iteration finishes when no new program states are discovered. Unfortunately,
such an iteration process does not terminate in finite time.

Example 4. For example, we consider the iterative computation of the set of
states that is reachable from at_f5 A x < z by applying the transition ps of our
example program. We obtain the following sequence of post-conditions (where

V = (pc,@,y,2)).

post(at_lo ANz < z,p3) = 3V : (pc” =la A" <2Z") A
(pc" =Lla ANpc=l ANz +1<y" A
r=z"+1ANy=y"Nz=2"))
=(atbonz—1<zAz<y)
post?(at_lo Nx < z,p2) = (at bo Nz —2< 2z Az < y)
post3(at_lo Nz < z,p3) = (at_bo Az —3 <z Az <7y)

post™(at_Ly N\ x

IN

z,p2) = (at_bo Nz —n<zAz<y)

In this sequence, we observe that at each iteration yields a set of states that
contains states not discovered before. For example, the set of states reachable
after applying the post-condition function once is not included in the original
set, i.e.,

(at boNz—1<zAz<y)E(a_lohz<z).

The set of states reachable after applying the post-condition function twice is
not included in the union of the above two sets, i.e.,

(at bonhz—2<zAz<y)E(a loNhz—1<zAzx<yVat_loAzx<z).

Furthermore, we observe that the set of states reachable after n-fold application
of post, where n > 1, still contains previously unreached states, i.e.,

Vn>1:(atbonz—n<zAz<y)
E(atlone <zV\ i (atlohNz—i<zAxz<y)).



