
Model Checking

Lectures 4, 5, 6, and 7

TUM

Reachability computation

Let ϕ be a formula over V and let ρ be a formula over V and V ′. We define a
post-condition function post as follows.

post(ϕ, ρ) = ∃V ′′ : ϕ[V ′′/V] ∧ ρ[V ′′/V][V/V ′] (1)

An application post(ϕ, ρ) computes the image of the set ϕ under the relation ρ.
Furthermore, for a natural number n we define postn(ϕ, ρ) as follows.

postn(ϕ, ρ) =

{
ϕ if n = 0

post(postn−1(ϕ, ρ), ρ) otherwise
(2)

By postn(ϕ, ρ) we represent the n-fold application of the post function to ϕ
with respect to ρ. We observe the following useful property of the post-condition
function.

∀ϕ ∀ρ1 ∀ρ2 : post(ϕ, ρ1 ∨ ρ2) = (post(ϕ, ρ1) ∨ post(ϕ, ρ2))

∀ϕ1 ∀ϕ2 ∀ρ : post(ϕ1 ∨ ϕ2, ρ) = (post(ϕ1, ρ) ∨ post(ϕ2, ρ))

(3)

This property states that the post-condition computation distributes over dis-
junction wrt. each argument.

Example 1. For example, given the transition relation ρ2 and the program vari-
ables V = (pc, x, y, z) from our example program, we compute the following post
condition.

post(at `2 ∧ y ≥ z, ρ2)

= (∃V ′′ : (at `2 ∧ y ≥ z)[V ′′/V] ∧ ρ2[V ′′/V][V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc′ = `2 ∧ x′′ + 1 ≤ y′′ ∧ x′ = x′′ + 1 ∧
y′ = y′′ ∧ z′ = z′′)[V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

`1

`2

ρ1

ρ2

`3

ρ3

`4

ρ4

`5

ρ5

(b)

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z))

ρ2 = (move(`2, `2) ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x, y, z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x, y, z))

ρ5 = (move(`3, `5) ∧ x+ 1 ≤ z ∧ skip(x, y, z))

(c)

Fig. 1. An example program (a), its control-flow graph (b), and its transition re-
lations (c). Formally, the program is given by Prog = (V, pc, ϕinit ,R, ϕerr) where
V = (pc, x, y, z) is the tuple of program variables, pc is the program counter vari-
able, R = {ρ1, ρ2, ρ3, ρ4, ρ5} is the set of (“single-statement”) transition relations,
ϕinit = at `1 is the initial condition, and ϕerr = at `5 is the error condition. The
primed variables are V ′ = (pc′, x′, y′, z′). We use move and skip as an abbrevia-
tion, for example move(`1, `2) stands for (pc = `1 ∧ pc′ = `2) and skip(x, y, z) rep-
resents (x′ = x ∧ y′ = y ∧ z′ = z).

We compute the 2-fold application by reusing the above result.

post2(at `2 ∧ y ≥ z, ρ2)

= post(post(at `2 ∧ y ≥ z, ρ2), ρ2)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y, ρ2)

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′ ∧ x′′ ≤ y′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x− 1 ≤ y ∧ x ≤ y)

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

�

We characterize ϕreach using post as follows.

ϕreach = ϕinit ∨ post(ϕinit , ρR) ∨ post(post(ϕinit , ρR), ρR) ∨ . . .

=
∨
i≥0 post

i(ϕinit , ρR)

(4)

2

The above disjunction (over every number of applications of the post-condition
function) ensures that all reachable states are taken into consideration.

Example 2. We compute ϕreach for our example program. We first obtain the
post-condition after applying the transition relation of the program once.

post(at `1, ρR)

= (post(at `1, ρ1) ∨ post(at `1, ρ2) ∨ post(at `1, ρ3) ∨
post(at `1, ρ4) ∨ post(at `1, ρ5))

= post(at `1, ρ1)

= (at `2 ∧ y ≥ z)

Next, we obtain the post-condition for one more application.

post(at `2 ∧ y ≥ z, ρR)

= (post(at `2 ∧ y ≥ z, ρ2) ∨ post(at `2 ∧ y ≥ z, ρ3))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y)

We repeat the application step once again.

post(at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y, ρR)

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρR) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρR))

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ2) ∨ post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ3) ∨
post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ4) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ5))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y)

So far, by iteratively applying the post-condition function to ϕinit we obtained
the following disjunction.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

We present this disjunction in a logically equivalent, simplified form as follows.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

Any further application of the post-condition function does not produce any
additional disjuncts. Hence, ϕreach is the above disjunction. �

3

Inductive Safety Arguments

An inductive invariant ϕ contains the intial states and is closed under succes-
sors. Formally, an inductive invariant is a formula over the program variables
that represents a superset of the initial program states and is closed under the
application of the post function wrt. the relation ρR, i.e.,

ϕinit |= ϕ and post(ϕ, ρR) |= ϕ .

A program is safe if there exists an inductive invariant ϕ that does not contain
any error states, i.e., ϕ ∧ ϕerr |= false.

Example 3. For our example program, the weakest inductive invariant consists
of the set of all states and is represented by the formula true. The strongest
inductive invariant was obtained in Example 2 and is shown below.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ (at `4 ∧ y ≥ z ∧ x ≥ y)

The strongest inductive invariant does not contain any error states. We observe
that a slightly weaker inductive invariant below also proves the safety of our
examples.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ at `4

�

Computation of reachable program states requires iterative application of
the post-condition function on the initial program states, see Equation (4). The
iteration finishes when no new program states are discovered. Unfortunately,
such an iteration process does not terminate in finite time.

Example 4. For example, we consider the iterative computation of the set of
states that is reachable from at `2 ∧ x ≤ z by applying the transition ρ2 of our
example program. We obtain the following sequence of post-conditions (where
V = (pc, x, y, z)).

post(at `2 ∧ x ≤ z, ρ2) = (∃V ′′ : (pc′′ = `2 ∧ x′′ ≤ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧
x = x′′ + 1 ∧ y = y′′ ∧ z = z′′))

= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y)

post2(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 2 ≤ z ∧ x ≤ y)

post3(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 3 ≤ z ∧ x ≤ y)

. . .

postn(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− n ≤ z ∧ x ≤ y)

In this sequence, we observe that at each iteration yields a set of states that
contains states not discovered before. For example, the set of states reachable

4

after applying the post-condition function once is not included in the original
set, i.e.,

(at `2 ∧ x− 1 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x ≤ z) .

The set of states reachable after applying the post-condition function twice is
not included in the union of the above two sets, i.e.,

(at `2 ∧ x− 2 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y ∨ at `2 ∧ x ≤ z) .

Furthermore, we observe that the set of states reachable after n-fold application
of post , where n ≥ 1, still contains previously unreached states, i.e.,

∀n ≥ 1 : (at `2 ∧ x− n ≤ z ∧ x ≤ y)

6|= (at `2 ∧ x ≤ z ∨
∨

1≤i<n(at `2 ∧ x− i ≤ z ∧ x ≤ y)) .

�

Approximation

Instead of computing ϕreach we compute an over-approximation of ϕreach by
a superset ϕ#

reach . Then, we check whether ϕ#
reach contains any error states. If

ϕ#
reach ∧ϕerr |= false holds then ϕreach ∧ϕerr |= false. Hence the program is safe.

Similarly to the iterative computation of ϕreach , we compute ϕ#
reach by apply-

ing iteration. However, instead of iteratively applying the post-condition function
post we use its over-approximation post# such that

∀ϕ ∀ρ : post(ϕ, ρ) |= post#(ϕ, ρ) . (5)

We decompose the computation of post# into two steps. First, we apply post
and then, we over-approximate the result using a function α such that

∀ϕ : ϕ |= α(ϕ) . (6)

That is, given an over-approximating function α we define post# as follows.

post#(ϕ, ρ) = α(post(ϕ, ρ)) (7)

Finally, we obtain ϕ#
reach :

ϕ#
reach = α(ϕinit) ∨

post#(α(ϕinit), ρR) ∨
post#(post#(α(ϕinit), ρR), ρR) ∨ . . .

=
∨
i≥0(post#)i(α(ϕinit), ρR)

(8)

The following lemma formalizes our over-approximation based reachability
computation.

Lemma 1. ϕreach |= ϕ#
reach

5

Predicate abstraction

We construct an over-approximation using a given set of building blocks, so-
called predicates. Each predicate is a formula over the program variables V .

We fix a finite set of predicates Preds = {p1, . . . , pn}. Then, we define an
over-approximation of ϕ that is represented using Preds as follows.

α(ϕ) =
∧
{p ∈ Preds | ϕ |= p} (9)

Example 5. For example, we consider a set of predicates Preds =
{at `1, . . . , at `5, y ≥ z, x ≥ y}. We compute α(at `2 ∧ y ≥ z ∧ x + 1 ≤ y)
as follows. First, we check the logical consequence between the argument to the
abstraction function and each of the predicates. The results are presented in the
following table.

at `1 at `2 at `3 at `4 at `5 y ≥ z x ≥ y
at `2 ∧ y ≥ z ∧ x+ 1 ≤ y 6|= |= 6|= 6|= 6|= |= 6|=

Then, we take the conjunction of the entailed predicates as the result of the
abstraction.

α(at `2 ∧ y ≥ z ∧ x+ 1 ≤ y) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z

If the set of predicates is empty then the result of applying predicate abstrac-
tion is true. For example, for Preds = ∅ we obtain

α(at `2 ∧ y ≥ z ∧ x+ 1 ≤ y) =
∧
∅ = true .

If no predicates in Preds is entailed the resulting abstraction is true as well. For
example, for Preds = at 1, . . . , at 3 we have

α(at `5) =
∧
∅ = true .

�

The predicate abstraction function in Equation (9) approximates ϕ using a
conjunction of predicates, which requires n entailment checks where n is the
number of given predicates.

Example 6. We use predicate abstraction to compute ϕ#
reach for our example

program following the iterative scheme presented in Equation 8. Let Preds =
{false, at `1, . . . , at `5, y ≥ z, x ≥ y}. First, let ϕ1 be the over-approximation of
the set of initial states ϕinit :

ϕ1 = α(at `1) =
∧
{at `1} = at `1 .

We apply post# on ϕ1 wrt. each program transition and obtain

ϕ2 = post#(ϕ1, ρ1) = α(at `2 ∧ y ≥ z︸ ︷︷ ︸
post(ϕ1,ρ1)

) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z ,

6

whereas post#(ϕ1, ρ2) = · · · = post#(ϕ1, ρ5) =
∧
{false, . . . } = false.

Now we apply program transitions on ϕ2 using post#. The application of
ρ1, ρ4, and ρ5 on ϕ2 results in false for the following reason. ϕ2 requires at `2,
but the transition relations ρ1, ρ4, and ρ5 are applicable if either at `1 or at `3
holds. For ρ2 we obtain

post#(ϕ2, ρ2) = α(at `2 ∧ y ≥ z ∧ x ≤ y) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z .

The resulting set above is equal to ϕ2 and, therefore, is discarded, since we are
already exploring states reachable from ϕ2. For ρ3 we obtain

post#(ϕ2, ρ3) = α(at `3 ∧ y ≥ z ∧ x ≥ y)

=
∧
{at `3, y ≥ z, x ≥ y} = at `3 ∧ y ≥ z ∧ x ≥ y

= ϕ3 .

We compute an over-approximation of the set of states that are reachable
from ϕ3 by applying post#. The transitions ρ1, ρ2, and ρ3 results in false due
to an inconsistency caused by the program counter valuations in ϕ3 and the
respective transition relations. For the transition ρ4 we obtain

post#(ϕ3, ρ4) = α(at `4 ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z)
=

∧
{at `4, y ≥ z, x ≥ y} = at `4 ∧ y ≥ z ∧ x ≥ y

= ϕ4 .

For the transition ρ5, which corresponds to the assertion violation, we obtain

post#(ϕ3, ρ5) = α(at `5 ∧ y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z)
= false .

Any further application of program transitions does not compute any addi-
tional reachable states. We conclude that ϕ#

reach = ϕ1 ∨ . . . ∨ ϕ4. Furthermore,

since ϕ#
reach ∧ at `5 |= false the program is safe. �

Algorithm AbstReach

We combine the characterization of abstract reachability using Equation (8) with
the predicat abstraction function given in Equation (9) and obtain an algorithm
AbstReach for computing ReachStates#. The algorithm is shown in Figure 2.

AbstReach takes as input a finite set of predicates Preds and computes
a set of formulas ReachStates# that represents an over-approximation ϕ#

reach .
Furthermore, AbstReach records its intermediate computation steps in a la-
beled tree Parent . (In the next section we will show how this tree can be used
to discover new predicates when a refined abstraction is needed.)

The initialization steps of AbstReach are shown in lines 1–5 of Figure 2.
First, we construct the abstraction function α according to Equation (9), and

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

function AbstReach

input

Preds - predicates

begin

α := λϕ .
∧
{p ∈ Preds | ϕ |= p}

post# := λ(ϕ, ρ) . α(post(ϕ, ρ))

ReachStates# := {α(ϕinit)}
Parent := ∅
Worklist := ReachStates#

while Worklist 6= ∅ do
ϕ := choose from Worklist

Worklist := Worklist \ {ϕ}
for each ρ ∈ R do

ϕ′ := post#(ϕ, ρ)

if ϕ′ 6|=
∨

ReachStates# then

ReachStates# := {ϕ′} ∪ ReachStates#

Parent := {(ϕ, ρ, ϕ′)} ∪ Parent

Worklist := {ϕ′} ∪Worklist

return (ReachStates#,Parent)

end

Fig. 2. Algorithm AbstReach for abstract reachability computation wrt. a given finite

set of predicates.

then use it to construct an over-approximation post# of the post-condition
function according to Equation (7). We initialize ReachStates# with an over-
approximation of the initial program states, which corresponds to the first dis-
junct in Equation (8). Since the initial states do not have any predecessors,
Parent is initially empty. Finally, we create a worklist Worklist that contains
sets of states on which post# has not been applied yet.

The main part of AbstReach in lines 6–14 implements the iterative applica-
tion of post# in Equation (8) using a while loop. The loop termination condition
checks if Worklist has any items to process. In case the worklist is not empty,
we choose such an item, say ϕ, and remove it from the worklist. For brevity, we
leave the selection procedure unspecified, but note that various strategies are
possible, e.g., breadth- or depth-first search. Then, we apply post# wrt. each
program transition, say ρ, on ϕ. Let ϕ′ be the result of such an application.
We add ϕ′ to ReachStates# if ϕ′ contains some program states that are not
already contained in one of the formulas in ReachStates#. We formulate the
above test as an entailment check between ϕ′ and the disjunction of all formulas
in ReachStates#. Often, there is a formula ψ in ReachStates# such that ϕ′ |= ψ.
In case that ϕ is added to ReachStates#, we record that ϕ was computed by

8

ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z ∧ x ≥ y

ϕ4 : at `4 ∧ y ≥ z ∧ x ≥ y

ρ1

ρ2

ρ3

ρ4

ϕ1 = α(ϕinit)

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

Fig. 3. Applying AbstReach on the program in Figure 1 and the set of predi-

cates Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ y}. The nodes ϕ1, . . . , ϕ4 represent

elements of ReachStates#. Labeled edges connecting the nodes represent Parent . The

dotted edge denotes the entailment relation between post#(ϕ2, ρ2) and ϕ2.

applying ρ on ϕ by adding a tuple (ϕ, ρ, ϕ′) to Parent . Finally, ϕ is put on the
worklist.

The loop execution terminates after a finite number of steps, since the range
of post# is finite (and is of size 2n where n is the size of Preds). The disjunction

of formulas in ReachStates# is logically equivalent to ϕ#
reach .

Example 7. We describe the application of AbstReach on our example pro-

gram when Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ y}. Figure 3 pro-

vides a pictorial illustration. Example 6 provides details on computed over-

approximations of post-conditions.

After constructing α and post# for the given predicates, we compute ϕ1 =

(at `1) and put it into ReachStates# and into Worklist . See the node ϕ1 in

Figure 3.

During the first loop iteration, we choose ϕ1 to be the element taked from

the worklist. Now we compute post# wrt. each program transition. For ρ1 we

obtain ϕ2 = (at `2 ∧ y ≥ z). The entailment check ϕ2 |=
∨

ReachStates#

fails, since
∨
ReachStates# is equal to ϕ1 and ϕ2 6|= ϕ1. Hence, ϕ2 is added

to ReachStates#. As a result, the tuple (ϕ1, ρ1, ϕ2) is added to Parent and ϕ2

becomes a worklist item. See the node ϕ2 as well as the edge between ϕ1 and

ϕ2 in Figure 3. We continue with applying program transitions on ϕ1. For ρ2 we

obtain post#(ϕ1, ρ2) = false. Since false |=
∨

ReachStates# there is no addition

to ReachStates#. Similarly, applying ρ3, . . . , ρ5 does not modify ReachStates#.

We start the second loop iteration with ReachStates# = {ϕ1, ϕ2}, Worklist =

{ϕ2}, and Parent = {(ϕ1, ρ1, ϕ2)}. We choose ϕ2 from the worklist. When ap-

plying post# on ϕ2 only ρ2 and ρ3 result sets of successor states that are not

9

equal to false. We obtain post#(ϕ2, ρ2) = (at `2 ∧ y ≥ z). Since (at `2 ∧ y ≥ z)
entails ϕ2 and hence

∨
ReachStates#, nothing is added to ReachStates# and we

proceed directly with ρ3. For ϕ3 = post#(ϕ2, ρ3) = (at `3 ∧ y ≥ z ∧ x ≥ y)

we observe that ϕ3 6|=
∨
ReachStates#. Hence, we add ϕ3 to ReachStates# and

Worklist , while (ϕ2, ρ3, ϕ3) is recorded in Parent . See the node ϕ3 as well as the

edge between ϕ2 and ϕ3 in Figure 3.

At the beginning of the third loop iteration we have ReachStates# =

{ϕ1, ϕ2, ϕ3}, Worklist = {ϕ3}, and Parent = {(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3)}. We

choose ϕ3 from the worklist. After computing ϕ4 by applying ρ4 and discovering

that ϕ4 6|=
∨
ReachStates#, we add ϕ4 following the algorithm. See the node

ϕ4 as well as the edge between ϕ3 and ϕ4 in Figure 3. Since all other program

transition yield false we proceed with the next iteration.

The fourth loop iteration removes ϕ4 from the worklist, but does not add any

new elements to it. Hence AbstReach terminates and outputs ReachStates# =

{ϕ1, . . . , ϕ4} as well as Parent = {(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3), (ϕ3, ρ4, ϕ4)}. �

Monotonicity:

∀ϕ1 ∀ϕ2 : (ϕ1 |= ϕ2)→ (α(ϕ1) |= α(ϕ2))

Solving refinement constraints

We take as input an infeasible sequence of program transitions ρ1 . . . ρn and
compute sets of states ϕ0, . . . , ϕn satisfying the following conditions.

ϕinit |= ϕ0

post(ϕ0, ρ1) |= ϕ1

. . .

post(ϕn−1, ρn) |= ϕn

ϕn ∧ ϕerr |= false .

(10)

Since ρ1 . . . ρn is infeasible, there above conditions are satisfiable. In general,
several solutions may exist. We describe how the least, the greatest, and an
intermediate solution can be computed.

Least solution

We obtain the least solution by applying the post-condition function in the
following way.

ϕ0 = ϕinit

ϕ1 = post(ϕ0, ρ1)

. . .

ϕn = post(ϕn−1, ρn)

(11)

10

Note that since the least solution ensures that for each 1 ≤ i ≤ n we have

ϕi = post(ϕinit , ρ1 . . . ρi) ,

and guarantee that ϕn ∧ ϕerr |= false.
Sometimes the least solution is not useful for refining the abstraction, since

the resulting abstraction is too presice.

Example 8. We illustrate how a least solution is computed using an example

program shown in Figure 1.

Let ρ1ρ3ρ5 be a counterexample path. For this path, we obtain the following

least solution of the constraints defined by (10).

ϕ0 = ϕinit = at `1

ϕ1 = post(ϕ0, ρ1) = (at `2 ∧ y ≥ z)

ϕ2 = post(ϕ1, ρ3) = (at `3 ∧ y ≥ z ∧ x ≥ y)

ϕ3 = post(ϕ2, ρ5) = false

The obtained refinement will ensure that the path ρ6ρ7ρ9 will not be considered

a counterexample during subsequent abstract reachability computation. �

Intermediate solution using interpolation

We illustrate how an intermediate solution can be computed by a technique called
interpolation. Interpolation takes as input two mutually unsatisfiable formulas
ϕ1 and ϕ2, i.e., ϕ1 |= ϕ2 |= false, and returns a formula ϕ such that i) ϕ is
expressed over common symbols of ϕ1 and ϕ2, ii) ϕ1 |= ϕ, and iii) ϕ∧ϕ2 |= false.
Let inter be an interpolation function such that inter(ϕ1, ϕ2) is an interpolant
for ϕ1 and ϕ2.

The following sequence of interplation computations can be used to find a
solution for constraints defined by (10).

ϕ0 = inter(ϕinit , (ρ1 ◦ . . . ◦ ρn) ∧ ϕerr [V ′/V])

ϕ1 = inter(post(ϕ0, ρ1), (ρ2 ◦ . . . ◦ ρn) ∧ ϕerr [V ′/V])

. . .

ϕn−1 = inter(post(ϕn−2, ρn−1), ρn ∧ ϕerr [V ′/V])

ϕn = inter(post(ϕn−1, ρn), ϕerr [V ′/V])

(12)

Intermediate solutions can avoid the deficiencies of least and greatest solutions
described above, although they still do not guarantee convergence of the abstrac-
tion refinement loop.

Example 9. We illustrate how an intermediate solution is computed using an

example program shown in Figure 1.

11

Let ρ1ρ3ρ5 be a counterexample path. For this path, we obtain the following

intermediate solution of the constraints in (10).

ϕ0 = inter(ϕinit , (ρ1 ◦ ρ3 ◦ ρ5) ∧ ϕerr [V ′/V]) = true

ϕ1 = inter(post(ϕ0, ρ1), (ρ3 ◦ ρ5) ∧ ϕerr [V ′/V]) = y ≥ z

ϕ2 = inter(post(ϕ1, ρ3), ρ5 ∧ ϕerr [V ′/V]) = x ≥ z

ϕ3 = inter(post(ϕ2, ρ5), ϕerr [V ′/V]) = false

The following validities show that ρ1ρ3ρ5 will not be considered a counterexam-

ple during subsequent refinement iterations.

ϕinit |= ϕ0

post(ϕ0, ρ1) = (at `2 ∧ y ≥ z) |= ϕ1

post(ϕ1, ρ3) = (at `3 ∧ x ≥ y ∧ y ≥ z) |= ϕ2

post(ϕ2, ρ5) = false |= ϕ3

�

12

