Model Checking

Lectures 3 and 4

TUM

Reachability computation

Let φ be a formula over V and let ρ be a formula over V and V^{\prime}. We define a post-condition function post as follows.

$$
\begin{equation*}
\operatorname{post}(\varphi, \rho)=\exists V^{\prime \prime}: \varphi\left[V^{\prime \prime} / V\right] \wedge \rho\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \tag{1}
\end{equation*}
$$

An application $\operatorname{post}(\varphi, \rho)$ computes the image of the set φ under the relation ρ. Furthermore, for a natural number n we define $\operatorname{post}^{n}(\varphi, \rho)$ as follows.

$$
\operatorname{post}^{n}(\varphi, \rho)= \begin{cases}\varphi & \text { if } n=0 \tag{2}\\ \operatorname{post}\left(\text { post }^{n-1}(\varphi, \rho), \rho\right) & \text { otherwise }\end{cases}
$$

By $\operatorname{post}^{n}(\varphi, \rho)$ we represent the n-fold application of the post function to φ with respect to ρ. We observe the following useful property of the post-condition function.

$$
\begin{align*}
& \forall \varphi \forall \rho_{1} \forall \rho_{2}: \operatorname{post}\left(\varphi, \rho_{1} \vee \rho_{2}\right)=\left(\operatorname{post}\left(\varphi, \rho_{1}\right) \vee \operatorname{post}\left(\varphi, \rho_{2}\right)\right) \tag{3}\\
& \forall \varphi_{1} \forall \varphi_{2} \forall \rho: \operatorname{post}\left(\varphi_{1} \vee \varphi_{2}, \rho\right)=\left(\operatorname{post}\left(\varphi_{1}, \rho\right) \vee \operatorname{post}\left(\varphi_{2}, \rho\right)\right)
\end{align*}
$$

This property states that the post-condition computation distributes over disjunction wrt. each argument.

Example 1. For example, given the transition relation ρ_{2} and the program variables $V=(p c, x, y, z)$ from our example program, we compute the following post condition.

$$
\begin{aligned}
& \operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{2}\right) \\
&=\left(\exists V^{\prime \prime}:\left(a t_{-} \ell_{2} \wedge y \geq z\right)\left[V^{\prime \prime} / V\right] \wedge \rho_{2}\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]\right) \\
&=\left(\exists V^{\prime \prime}:\left(p c^{\prime \prime}=\ell_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime}\right) \wedge\right. \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge p c^{\prime}=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x^{\prime}=x^{\prime \prime}+1 \wedge\right. \\
&\left.\left.y^{\prime}=y^{\prime \prime} \wedge z^{\prime}=z^{\prime \prime}\right)\left[V / V^{\prime}\right]\right) \\
&=\left(\exists V^{\prime \prime}:\left(p c^{\prime \prime}=\ell_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime}\right) \wedge\right. \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge p c=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge\right. \\
&\left.\left.y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right)\right) \\
&=\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y\right)
\end{aligned}
$$

We compute the 2 -fold application by reusing the above result.

$$
\begin{aligned}
& \text { post }^{2}\left(\text { at_} \ell_{2} \wedge y \geq z, \rho_{2}\right) \\
& =\operatorname{post}\left(\text { post }\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{2}\right), \rho_{2}\right) \\
& =\operatorname{post}\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{2}\right) \\
& =\left(\exists V^{\prime \prime}:\left(p c^{\prime \prime}=\ell_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime} \wedge x^{\prime \prime} \leq y^{\prime \prime}\right) \wedge\right. \\
& \quad\left(p c^{\prime \prime}=\ell_{2} \wedge p c=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge\right. \\
& \left.\left.\quad y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right)\right) \\
& =\left(p c=\ell_{2} \wedge y \geq z \wedge x-1 \leq y \wedge x \leq y\right) \\
& =\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y\right)
\end{aligned}
$$

We characterize $\varphi_{\text {reach }}$ using post as follows.

$$
\begin{align*}
\varphi_{\text {reach }} & =\varphi_{\text {init }} \vee \operatorname{post}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \tag{4}\\
& =\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)
\end{align*}
$$

The above disjunction (over every number of applications of the post-condition function) ensures that all reachable states are taken into consideration.

Example 2. We compute $\varphi_{\text {reach }}$ for our example program. We first obtain the post-condition after applying the transition relation of the program once.

$$
\begin{aligned}
\operatorname{post} & \left(a t_{-} \ell_{1}, \rho_{\mathcal{R}}\right) \\
= & \left(\operatorname{post}\left(a t_{-} \ell_{1}, \rho_{1}\right) \vee \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{2}\right) \vee \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{3}\right) \vee\right. \\
& \left.\quad \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{4}\right) \vee \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{5}\right)\right) \\
= & \operatorname{post}\left(a t_{-} \ell_{1}, \rho_{1}\right) \\
= & \left(a t_{-} \ell_{2} \wedge y \geq z\right)
\end{aligned}
$$

Next, we obtain the post-condition for one more application.

$$
\begin{aligned}
& \text { post }\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{\mathcal{R}}\right) \\
& \quad=\left({\left.\operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{2}\right) \vee \operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z, \rho_{3}\right)\right)}_{\quad=\left(\text { at- } \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right)}\right.
\end{aligned}
$$

We repeat the application step once again.

$$
\begin{aligned}
& \operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{\mathcal{R}}\right) \\
&=\left(\operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{\mathcal{R}}\right)\right) \\
&=\left(\operatorname{post}\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{2}\right) \vee \operatorname{post}\left(\text { at- } \ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{3}\right) \vee\right. \\
&\left.\quad \operatorname{post}\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{4}\right) \vee \operatorname{post}\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{5}\right)\right) \\
&=\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x=y \vee\right. \\
&\left.a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

So far, by iteratively applying the post-condition function to $\varphi_{\text {init }}$ we obtained the following disjunction.

$$
\begin{aligned}
& a t_{-} \ell_{1} \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y \vee a t_{-} \ell_{3} \wedge y \geq z \wedge x=y \vee \\
& a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

We present this disjunction in a logically equivalent, simplified form as follows.

$$
\begin{aligned}
& a t_{-} \ell_{1} \vee \\
& a t_{-} \ell_{2} \wedge y \geq z \vee \\
& a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
& a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

Any further application of the post-condition function does not produce any additional disjuncts. Hence, $\varphi_{\text {reach }}$ is the above disjunction.

Inductive Safety Arguments

An inductive invariant φ contains the intial states and is closed under successors. Formally, an inductive invariant is a formula over the program variables that represents a superset of the initial program states and is closed under the application of the post function wrt. the relation $\rho_{\mathcal{R}}$, i.e.,

$$
\varphi_{\text {init }}=\varphi \quad \text { and } \quad \operatorname{post}\left(\varphi, \rho_{\mathcal{R}}\right) \models \varphi .
$$

A program is safe if there exists an inductive invariant φ that does not contain any error states, i.e., $\varphi \wedge \varphi_{\text {err }} \models$ false.

Example 3. For our example program, the weakest inductive invariant consists of the set of all states and is represented by the formula true. The strongest inductive invariant was obtained in Example 2 and is shown below.

$$
a t_{-} \ell_{1} \vee\left(a t_{-} \ell_{2} \wedge y \geq z\right) \vee\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee\left(a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y\right)
$$

The strongest inductive invariant does not contain any error states. We observe that a slightly weaker inductive invariant below also proves the safety of our examples.

$$
a t_{-} \ell_{1} \vee\left(a t_{-} \ell_{2} \wedge y \geq z\right) \vee\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee a t_{-} \ell_{4}
$$

Computation of reachable program states requires iterative application of the post-condition function on the initial program states, see Equation (4). The iteration finishes when no new program states are discovered. Unfortunately, such an iteration process does not terminate in finite time.

Example 4. For example, we consider the iterative computation of the set of states that is reachable from $a t_{-} \ell_{2} \wedge x \leq z$ by applying the transition ρ_{2} of our example program. We obtain the following sequence of post-conditions (where $V=(p c, x, y, z))$.

$$
\begin{aligned}
& \operatorname{post}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(\exists V^{\prime \prime}:\right. \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge x^{\prime \prime} \leq z^{\prime \prime}\right) \wedge \\
&\left(p c^{\prime \prime}=\ell_{2} \wedge p c=\ell_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge\right. \\
&\left.\left.x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right)\right) \\
&=\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y\right) \\
& \operatorname{post}^{2}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-2 \leq z \wedge x \leq y\right) \\
& \operatorname{post}^{3}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-3 \leq z \wedge x \leq y\right) \\
& \ldots \operatorname{post}^{n}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)= \\
&\left(a t_{-} \ell_{2} \wedge x-n \leq z \wedge x \leq y\right)
\end{aligned}
$$

In this sequence, we observe that at each iteration yields a set of states that contains states not discovered before. For example, the set of states reachable after applying the post-condition function once is not included in the original set, i.e.,

$$
\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y\right) \not \vDash\left(a t_{-} \ell_{2} \wedge x \leq z\right)
$$

The set of states reachable after applying the post-condition function twice is not included in the union of the above two sets, i.e.,

$$
\left(a t_{-} \ell_{2} \wedge x-2 \leq z \wedge x \leq y\right) \not \vDash\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y \vee a t_{-} \ell_{2} \wedge x \leq z\right)
$$

Furthermore, we observe that the set of states reachable after n-fold application of post, where $n \geq 1$, still contains previously unreached states, i.e.,

$$
\begin{aligned}
& \forall n \geq 1:\left(a t_{-} \ell_{2} \wedge x-n \leq z \wedge x \leq y\right) \\
& \quad \neq\left(a t_{-} \ell_{2} \wedge x \leq z \vee \bigvee_{1 \leq i<n}\left(a t_{-} \ell_{2} \wedge x-i \leq z \wedge x \leq y\right)\right)
\end{aligned}
$$

Approximation

Instead of computing $\varphi_{\text {reach }}$ we compute an over-approximation of $\varphi_{\text {reach }}$ by a superset $\varphi_{\text {reach }}^{\#}$. Then, we check whether $\varphi_{\text {reach }}^{\#}$ contains any error states. If $\varphi_{\text {reach }}^{\#} \wedge \varphi_{\text {err }} \vDash$ false holds then $\varphi_{\text {reach }} \wedge \varphi_{\text {err }} \vDash$ false. Hence the program is safe.

Similarly to the iterative computation of $\varphi_{\text {reach }}$, we compute $\varphi_{\text {reach }}^{\#}$ by applying iteration. However, instead of iteratively applying the post-condition function post we use its over-approximation post ${ }^{\#}$ such that

$$
\begin{equation*}
\forall \varphi \forall \rho: \operatorname{post}(\varphi, \rho) \models \operatorname{post}^{\#}(\varphi, \rho) . \tag{5}
\end{equation*}
$$

We decompose the computation of post ${ }^{\#}$ into two steps. First, we apply post and then, we over-approximate the result using a function α such that

$$
\begin{equation*}
\forall \varphi: \varphi \models \alpha(\varphi) \tag{6}
\end{equation*}
$$

That is, given an over-approximating function α we define post ${ }^{\#}$ as follows.

$$
\begin{equation*}
\operatorname{post}^{\#}(\varphi, \rho)=\alpha(\operatorname{post}(\varphi, \rho)) \tag{7}
\end{equation*}
$$

Finally, we obtain $\varphi_{\text {reach }}^{\#}$:

$$
\begin{align*}
\varphi_{\text {reach }}^{\#}= & \alpha\left(\varphi_{\text {init }}\right) \vee \tag{8}\\
& \text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{\mathcal{R}}\right) \vee \\
& \text { post }^{\#}\left(\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \\
= & \bigvee_{i \geq 0}\left(\text { post }^{\#}\right)^{i}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{\mathcal{R}}\right)
\end{align*}
$$

The following lemma formalizes our over-approximation based reachability computation.
Lemma 1. $\varphi_{\text {reach }} \models \varphi_{\text {reach }}^{\#}$

Predicate abstraction

We construct an over-approximation using a given set of building blocks, socalled predicates. Each predicate is a formula over the program variables V.

We fix a finite set of predicates Preds $=\left\{p_{1}, \ldots, p_{n}\right\}$. Then, we define an over-approximation of φ that is represented using Preds as follows.

$$
\begin{equation*}
\alpha(\varphi)=\bigwedge\{p \in \operatorname{Preds}|\varphi|=p\} \tag{9}
\end{equation*}
$$

Example 5. For example, we consider a set of predicates Preds = $\left\{a t_{-} \ell_{1}, \ldots, a t_{-} \ell_{5}, y \geq z, x \geq y\right\}$. We compute $\alpha\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x+1 \leq y\right)$ as follows. First, we check the logical consequence between the argument to the abstraction function and each of the predicates. The results are presented in the following table.

$$
\begin{array}{c|c|c|c|c|c|c}
& a t_{-} \ell_{1} & a t_{-} \ell_{2} & a t_{-} \ell_{3} & a t_{-} \ell_{4} & a t_{-} \ell_{5} & y \geq z \\
\hline a t_{-} \ell_{2} \wedge y \geq z \wedge x+1 \leq y & \vDash & \models & \vDash & \vDash & \neq & \models \\
\hline
\end{array}
$$

Then, we take the conjunction of the entailed predicates as the result of the abstraction.

$$
\alpha\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x+1 \leq y\right)=\bigwedge\left\{a t_{-} \ell_{2}, y \geq z\right\}=a t_{-} \ell_{2} \wedge y \geq z
$$

If the set of predicates is empty then the result of applying predicate abstraction is true. For example, for Preds $=\emptyset$ we obtain

$$
\alpha\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x+1 \leq y\right)=\bigwedge \emptyset=\text { true }
$$

If no predicates in Preds is entailed the resulting abstraction is true as well. For example, for Preds $=a t_{-} 1, \ldots, a t_{-} 3$ we have

$$
\alpha\left(a t_{-} \ell_{5}\right)=\bigwedge \emptyset=\text { true } .
$$

The predicate abstraction function in Equation (9) approximates φ using a conjunction of predicates, which requires n entailment checks where n is the number of given predicates.

Example 6. We use predicate abstraction to compute $\varphi_{\text {reach }}^{\#}$ for our example program following the iterative scheme presented in Equation 8. Let Preds $=$ $\left\{\right.$ false, at- $\left.\ell_{1}, \ldots, a t_{-} \ell_{5}, y \geq z, x \geq y\right\}$. First, let φ_{1} be the over-approximation of the set of initial states $\varphi_{\text {init }}$:

$$
\varphi_{1}=\alpha\left(a t_{-} \ell_{1}\right)=\bigwedge\left\{a t_{-} \ell_{1}\right\}=a t_{-} \ell_{1}
$$

We apply post\# on φ_{1} wrt. each program transition and obtain

$$
\varphi_{2}=\operatorname{post}^{\#}\left(\varphi_{1}, \rho_{1}\right)=\alpha(\underbrace{a t_{-} \ell_{2} \wedge y \geq z}_{\operatorname{post}\left(\varphi_{1}, \rho_{1}\right)})=\bigwedge\left\{a t_{-} \ell_{2}, y \geq z\right\}=a t_{-} \ell_{2} \wedge y \geq z
$$

whereas post ${ }^{\#}\left(\varphi_{1}, \rho_{2}\right)=\cdots=$ post $^{\#}\left(\varphi_{1}, \rho_{5}\right)=\bigwedge\{$ false,$\ldots\}=$ false.
Now we apply program transitions on φ_{2} using post ${ }^{\#}$. The application of ρ_{1}, ρ_{4}, and ρ_{5} on φ_{2} results in false for the following reason. φ_{2} requires at_ ℓ_{2}, but the transition relations ρ_{1}, ρ_{4}, and ρ_{5} are applicable if either at- ℓ_{1} or $a t_{-} \ell_{3}$ holds. For ρ_{2} we obtain

$$
\operatorname{post}^{\#}\left(\varphi_{2}, \rho_{2}\right)=\alpha\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y\right)=\bigwedge\left\{a t_{-} \ell_{2}, y \geq z\right\}=a t_{-} \ell_{2} \wedge y \geq z
$$

The resulting set above is equal to φ_{2} and, therefore, is discarded, since we are already exploring states reachable from φ_{2}. For ρ_{3} we obtain

$$
\begin{aligned}
\operatorname{post}^{\#}\left(\varphi_{2}, \rho_{3}\right) & =\alpha\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right) \\
& =\bigwedge\left\{a t_{-} \ell_{3}, y \geq z, x \geq y\right\}=a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y \\
& =\varphi_{3}
\end{aligned}
$$

We compute an over-approximation of the set of states that are reachable from φ_{3} by applying post\#. The transitions ρ_{1}, ρ_{2}, and ρ_{3} results in false due
to an inconsistency caused by the program counter valuations in φ_{3} and the respective transition relations. For the transition ρ_{4} we obtain

$$
\begin{aligned}
\operatorname{post}^{\#}\left(\varphi_{3}, \rho_{4}\right) & =\alpha\left(a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y \wedge x \geq z\right) \\
& =\bigwedge\left\{a t_{-} \ell_{4}, y \geq z, x \geq y\right\}=a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y \\
& =\varphi_{4}
\end{aligned}
$$

For the transition ρ_{5}, which corresponds to the assertion violation, we obtain

$$
\begin{aligned}
\operatorname{post}^{\#}\left(\varphi_{3}, \rho_{5}\right) & =\alpha\left(\text { at_} \ell_{5} \wedge y \geq z \wedge x \geq y \wedge x+1 \leq z\right) \\
& =\text { false }
\end{aligned}
$$

Any further application of program transitions does not compute any additional reachable states. We conclude that $\varphi_{\text {reach }}^{\#}=\varphi_{1} \vee \ldots \vee \varphi_{4}$. Furthermore, since $\varphi_{\text {reach }}^{\#} \wedge a t_{-} \ell_{5} \models$ false the program is safe.

