
0.1 Introduction

As the title of this chapter announces, we are interested in a specific category of algorithms. The input is a
program. The output is an answer to the question whether the program is correct. Correctness is expressed
by one of two properties: non-reachability of a distinguished state, or termination. As the term software in
the title indicates, we consider classes of programs for which both, non-reachability and termination, are not
decidable. We distinguish between algorithms that, for some inputs, do not terminate and algorithms that
always terminate but, for some inputs, the output is a don’t know answer.

The specificity of our category of algorithms lies in the way the algorithms call decision procedures as
subroutines. Decision procedures in the sense used in this chapter are algorithms to decide whether the
inclusion between two given sets of states holds. The two sets of states are represented by a logical formula.
The inclusion between the sets reduces to the validity of a formula in a logical theory. The logical theory
corresponds to kind of data in the considered class of programs. In this chapter, we use decision procedures
as an oracle. We abstract away from the fact that the logical theory may be undecidable. The behaviour of
our algorithms is left unspecified if the oracle returns a don’t know answer (or no answer at all).

A set of states is sometimes called a predicate; a superset of a set is sometimes called its abstraction; the
terminology predicate abstraction refers to the fact that the sets used for abstraction are formed by Boolean
combination from a finite number of given sets; it is a convention to refer to only that finite number of given
sets as predicates (thus reserving the terminology for a special case). The more predicates, the more sets
are available for the abstraction of a set by a superset. In this context, abstraction refinement is simply the
process of adding new predicates. The crux of the algorithms is the (counterexample-guided) way in which
new predicates are constructed.

Software verification with predicate abstraction is an ongoing research topic (see our list of references).
We can expect a great number of variations and optimizations to be proposed in the future. Yet, a few
basic principles have emerged which will remain the basis for further developments even in the long term.
Those few basic principles keep re-appearing in different settings, each setting being motivated by a specific
application scenario. The idea of this chapter is to abstract away from specific application scenarios and to
present the few basic principles in the shortest possible way in the simplest possible formalism.

0.2 Preliminaries

In this section, we describe programs, computations, and properties. To see an example of a program early,
go to Figure 0.1.

0.2.1 Programs

A program Prog = (V, pc, ϕinit ,R, ϕerr ) consists of

• V - a finite tuple of program variables,
• pc - a program counter variable that is included in V ,
• ϕinit - an initiation condition given by a formula over V ,
• R - a finite set of (“single-statement”) transition relations, where each transition relation ρ ∈ R is given

by a formula over V and their primed versions V ′,
• ϕerr - an error condition given by a formula over V .

Each program variable is assigned a domain of values. A program state is a function that assigns each
program variable a value from its respective domain. Let Σ be the set of program states. A formula with
free variables in V represents a set of program states. A formula with free variables in V and V ′ represents
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main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

`1

`2

ρ1

ρ2

`3

ρ3

`4

ρ4

`5

ρ5

(b)

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z))

ρ2 = (move(`2, `2) ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x, y, z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x, y, z))

ρ5 = (move(`3, `5) ∧ x+ 1 ≤ z ∧ skip(x, y, z))

(c)

Fig. 0.1 An example program (a), its control-flow graph (b), and its transition relations (c). Formally, the program is given by

Prog = (V, pc, ϕinit ,R, ϕerr ) where V = (pc, x, y, z) is the tuple of program variables, pc is the program counter variable, R =

{ρ1, ρ2, ρ3, ρ4, ρ5} is the set of (“single-statement”) transition relations, ϕinit = at `1 is the initial condition, and ϕerr = at `5
is the error condition. The primed variables are V ′ = (pc′, x′, y′, z′). We use move and skip as an abbreviation, for example

move(`1, `2) stands for (pc = `1 ∧ pc′ = `2) and skip(x, y, z) represents (x′ = x ∧ y′ = y ∧ z′ = z).

a binary relation over program states, where the first component of each pair assigns values to V and
the second component of the pair assigns values to V ′. We identify formulas with sets and relations that
they represent. Accordingly, we identify the logical consequence relation between formulas |= with the set
inclusion ⊆. Furthermore, we identify the satisfaction relation between valuations and formulas, which is
denoted by |=, with the membership relation ∈.

Example 1. For example, we consider the program shown in Figure 0.1 that has program variables V =
(pc, x, y, z). The program variables x, y, and z range over integers. The set of control locations is L =
{`1, . . . `5}. A formula y ≥ z represents the set of program states in which the value of the variable y is
greater than the value of z. Let s be a program state that assigns 1, 3, 2, and `1 to the program variables x,
y, z, and pc, respectively. Then, we have s |= y ≥ z. Furthermore, we have y ≥ z |= y + 1 ≥ z. �

Each state that satisfies the initiation condition ϕinit is called an initial state. Each state that satisfies
the error condition ϕerr is called an error state. The program transition relation ρR is the union of the
“single-statement” transition relations, i.e.,

ρR =
∨
ρ∈R

ρ . (0.1)

A pair of states (s, s′) is connected by a program transition if it lies in the program transition relation ρR,
i.e., if (s, s′) |= ρR.

Let L be the domain of the program counter variable pc, i.e., the set of control locations of the program.
To simplify the notation in the examples, we introduce the following abbreviations, where ` ∈ L is a control
location and v1, . . . , vn are program variables.
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at ` = (pc = `)

at ′ ` = (pc′ = `)

move(`, `′) = (at ` ∧ at ′ `)

skip(v1, . . . , vn) = (v′1 = v1 ∧ . . . ∧ v′n = vn)

(0.2)

Example 2. Our example program has an initiation condition ϕinit = (pc = at `1) and an error condi-
tion ϕerr = (pc = at `5). Program transitions R = {ρ1, ρ2, ρ3, ρ4, ρ5} form a control-flow graph as shown in
Figure 0.1(b). The corresponding transition relations are in Figure 0.1(c). Here, the first transition relation
ρ1 requires that the value of program counter is equal to `1 and that y ≥ z for the transition to be applicable.
After executing the transition, the program counter value changes to `2 and the values of x, y, and z are not
modified. The transition relation of the program consists of the disjunction ρR = ρ1 ∨ ρ2 ∨ ρ3 ∨ ρ4 ∨ ρ5. �

A program computation is either a finite or an infinite sequence of program states s1, s2, . . . that satisfies
the following three conditions.

• The first element is an initial state, i.e., s1 |= ϕinit .
• Each pair of consecutive states (si, si+1) is connected by a program transition, i.e., (si, si+1) |= ρR.
• If the sequence is finite then the last element does not have any successors wrt. the program transition

relation ρR, i.e., if the last element is sn, there is no state s such that (sn, s) |= ρR.

Example 3. In the example program, we consider a program computation connected by following the sequence
of transitions ρ1, ρ2, ρ2, ρ3, ρ4. We represent states as tuples of values of the program variables pc, x, y, and
z, respectively.

(`1, 1, 3, 2), (`2, 1, 3, 2), (`2, 2, 3, 2), (`2, 3, 3, 2), (`3, 3, 3, 2), (`4, 3, 3, 2)

The last program state does not any successors wrt. the program transition relation. �

0.2.2 Correctness

We consider only two properties of program computations. These properties are concerned with the reach-
ability of particular program states and the finiteness, i.e., termination, of the computation. Checking an
expressive class of temporal properties can be reduced to reasoning about reachability and termination.

Safety A state is reachable if it occurs in a program computation. A program is safe if no error state is
reachable.

Let ϕreach denote the set of reachable program states. A program is safe if and only if no error state lies
in ϕreach , i.e.,

ϕerr ∧ ϕreach |= false . (0.3)

Example 4. In our example program, the state (`3, 3, 3, 2) is reachable, as witnessed by the above computa-
tion. The set of reachable program states is

ϕreach = (at `1 ∨
at `2 ∧ y ≥ z ∨
at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `4 ∧ y ≥ z ∧ x ≥ y) .

Our program is safe, since ϕreach does not contain any states at the control location `5. �

Termination A program terminates if every computation is finite. A binary relation is well-founded if it
does not admit any infinite chains. The restriction of the program transition relation ρR to the reachable
program states is given by ρR ∧ ϕreach (the conjunction of a formula over V and V ′ and a formula over V ).
A program terminates if and only if the binary relation ρR ∧ ϕreach is well-founded.

3



Example 5. For our example, we obtain the following restriction of the program transition relation to reach-
able states.

ρR ∧ ϕreach = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z) ∨
move(`2, `2) ∧ y ≥ z ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z) ∨
move(`2, `3) ∧ y ≥ z ∧ x ≥ y ∧ skip(x, y, z) ∨
move(`3, `4) ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z ∧ skip(x, y, z))

The restriction consists of four disjuncts, since the transition relation ρ5 does not intersect with ϕreach .
Furthermore, the restriction is well-founded, i.e., our program terminates. Any attempt to construct an
infinite sequence leads to unbounded increase of the values of the variable x, which contradicts the condition
that x is bounded from above by y whenever the loop execution is carried on. �

0.2.3 Reachability and transitive closure computation

Let ϕ be a formula over V and let ρ be a formula over V and V ′. We define a post-condition function post
as follows.

post(ϕ, ρ) = ∃V ′′ : ϕ[V ′′/V ] ∧ ρ[V ′′/V ][V/V ′] (0.4)

An application post(ϕ, ρ) computes the image of the set ϕ under the relation ρ. Furthermore, for a natural
number n we define postn(ϕ, ρ) as follows.

postn(ϕ, ρ) =

{
ϕ if n = 0

post(postn−1(ϕ, ρ), ρ) otherwise
(0.5)

By postn(ϕ, ρ) we represent the n-fold application of the post function to ϕ with respect to ρ. We observe
the following useful property of the post-condition function.

∀ϕ ∀ρ1 ∀ρ2 : post(ϕ, ρ1 ∨ ρ2) = (post(ϕ, ρ1) ∨ post(ϕ, ρ2))

∀ϕ1 ∀ϕ2 ∀ρ : post(ϕ1 ∨ ϕ2, ρ) = (post(ϕ1, ρ) ∨ post(ϕ2, ρ))

(0.6)

This property states that the post-condition computation distributes over disjunction wrt. each argument.

Example 6. For example, given the transition relation ρ2 and the program variables V = (pc, x, y, z) from
our example program, we compute the following post condition.

post(at `2 ∧ y ≥ z, ρ2)

= (∃V ′′ : (at `2 ∧ y ≥ z)[V ′′/V ] ∧ ρ2[V ′′/V ][V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc′ = `2 ∧ x′′ + 1 ≤ y′′ ∧ x′ = x′′ + 1 ∧
y′ = y′′ ∧ z′ = z′′)[V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

We compute the 2-fold application by reusing the above result.
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post2(at `2 ∧ y ≥ z, ρ2)

= post(post(at `2 ∧ y ≥ z, ρ2), ρ2)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y, ρ2)

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′ ∧ x′′ ≤ y′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x− 1 ≤ y ∧ x ≤ y)

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

�

We characterize ϕreach using post as follows.

ϕreach = ϕinit ∨ post(ϕinit , ρR) ∨ post(post(ϕinit , ρR), ρR) ∨ . . .

=
∨
i≥0 post i(ϕinit , ρR)

(0.7)

The above disjunction (over every number of applications of the post-condition function) ensures that all
reachable states are taken into consideration.

Example 7. We compute ϕreach for our example program. We first obtain the post-condition after applying
the transition relation of the program once.

post(at `1, ρR)

= (post(at `1, ρ1) ∨ post(at `1, ρ2) ∨ post(at `1, ρ3) ∨
post(at `1, ρ4) ∨ post(at `1, ρ5))

= post(at `1, ρ1)

= (at `2 ∧ y ≥ z)

Next, we obtain the post-condition for one more application.

post(at `2 ∧ y ≥ z, ρR)

= (post(at `2 ∧ y ≥ z, ρ2) ∨ post(at `2 ∧ y ≥ z, ρ3))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y)

We repeat the application step once again.

post(at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y, ρR)

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρR) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρR))

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ2) ∨ post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ3) ∨
post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ4) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ5))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y)

So far, by iteratively applying the post-condition function to ϕinit we obtained the following disjunction.
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at `1 ∨
at `2 ∧ y ≥ z ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

We present this disjunction in a logically equivalent, simplified form as follows.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

Any further application of the post-condition function does not produce any additional disjuncts. Hence,
ϕreach is the above disjunction. �

Let ρ1 and ρ2 be formulas over V and V ′. We define a relational composition function ◦ as follows.

ρ1 ◦ ρ2 = ∃V ′′ : ρ1[V ′′/V ′] ∧ ρ2[V ′′/V ] (0.8)

Given ρR and a natural number n, we define an n-time transition composition compn(ρR) as follows.

compn(ρR) =

{
Id if n = 0

ρR ◦ compn−1(ρR) otherwise

Example 8. For example, given the transition relations ρ1, ρ2, and the program variables V = (pc, x, y, z)
from our example program we obtain the following relational composition.

ρ1 ◦ ρ2 = (∃V ′′ : (pc = `1 ∧ pc′ = `2 ∧ y ≥ z ∧
x′ = x ∧ y′ = y ∧ z′ = z)[V ′′/V ′] ∧
(pc = `2 ∧ pc′ = `2 ∧ x+ 1 ≤ y ∧
x′ = x+ 1 ∧ y′ = y ∧ z′ = z)[V ′′/V ])

= (∃V ′′ : (pc = `1 ∧ pc′′ = `2 ∧ y ≥ z ∧
x′′ = x ∧ y′′ = y ∧ z′′ = z) ∧

(pc′′ = `2 ∧ pc′ = `2 ∧ x′′ + 1 ≤ y′′ ∧
x′ = x′′ + 1 ∧ y′ = y′′ ∧ z′ = z′′))

= (pc = `1 ∧ pc′ = `2 ∧ y ≥ z ∧ x+ 1 ≤ y ∧
x′ = x+ 1 ∧ y′ = y ∧ z′ = z)

�

We can compute the (irreflexive) transitive closure ρ+R using comp as follows.

ρ+R = ρR ∨ ρR ◦ ρR ∨ ρR ◦ ρR ◦ ρR ∨ . . .

=
∨
i≥1 compi(ρR)
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0.2.4 Inductive Safety and Termination Arguments

An inductive invariant ϕ contains the intial states and is closed under successors. Formally, an inductive
invariant is a formula over the program variables that represents a superset of the initial program states and
is closed under the application of the post function wrt. the relation ρR, i.e.,

ϕinit |= ϕ and post(ϕ, ρR) |= ϕ .

A program is safe if there exists an inductive invariant ϕ that does not contain any error states, i.e., ϕ∧ϕerr |=
false.

Example 9. For our example program, the weakest inductive invariant consists of the set of all states and is
represented by the formula true. The strongest inductive invariant was obtained in Example 7 and is shown
below.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ (at `4 ∧ y ≥ z ∧ x ≥ y)

The strongest inductive invariant does not contain any error states. We observe that a slightly weaker
inductive invariant below also proves the safety of our examples.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ at `4

�

An inductive transition invariant ψ contains the restriction of the program transition relation to reachable
states and is closed under relational composition with the program transition relation. Formally, given an
inductive invariant ϕ we require that an inductive transition invariant ψ satisfies the following conditions:

ρR ∧ ϕ |= ψ and ψ ◦ ρR |= ψ .

A program terminates if there exist a finite number of well-founded relations over program states
WF 1, . . . ,WFn whose union contains an inductive transition invariant, i.e., ψ |= WF 1 ∨ . . . ∨WFn.

0.3 Abstract reachability computation

Computation of reachable program states requires iterative application of the post-condition function on the
initial program states, see Equation (0.7). The iteration finishes when no new program states are discovered.
Unfortunately, such an iteration process does not terminate in finite time.

Example 10. For example, we consider the iterative computation of the set of states that is reachable from
at `2 ∧ x ≤ z by applying the transition ρ2 of our example program. We obtain the following sequence of
post-conditions (where V = (pc, x, y, z)).

post(at `2 ∧ x ≤ z, ρ2) = (∃V ′′ : (pc′′ = `2 ∧ x′′ ≤ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧
x = x′′ + 1 ∧ y = y′′ ∧ z = z′′))

= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y)

post2(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 2 ≤ z ∧ x ≤ y)

post3(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 3 ≤ z ∧ x ≤ y)

. . .

postn(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− n ≤ z ∧ x ≤ y)
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In this sequence, we observe that at each iteration yields a set of states that contains states not discovered
before. For example, the set of states reachable after applying the post-condition function once is not included
in the original set, i.e.,

(at `2 ∧ x− 1 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x ≤ z) .

The set of states reachable after applying the post-condition function twice is not included in the union of
the above two sets, i.e.,

(at `2 ∧ x− 2 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y ∨ at `2 ∧ x ≤ z) .

Furthermore, we observe that the set of states reachable after n-fold application of post , where n ≥ 1, still
contains previously unreached states, i.e.,

∀n ≥ 1 : (at `2 ∧ x− n ≤ z ∧ x ≤ y)

6|= (at `2 ∧ x ≤ z ∨
∨

1≤i<n(at `2 ∧ x− i ≤ z ∧ x ≤ y)) .

�

Instead of computing ϕreach we compute an over-approximation of ϕreach by a superset ϕ#
reach . Then,

we check whether ϕ#
reach contains any error states. If ϕ#

reach ∧ ϕerr |= false holds then ϕreach ∧ ϕerr |= false.
Hence the program is safe.

Similarly to the iterative computation of ϕreach , we compute ϕ#
reach by applying iteration. However, instead

of iteratively applying the post-condition function post we use its over-approximation post# such that

∀ϕ ∀ρ : post(ϕ, ρ) |= post#(ϕ, ρ) . (0.9)

We decompose the computation of post# into two steps. First, we apply post and then, we over-approximate
the result using a function α such that

∀ϕ : ϕ |= α(ϕ) . (0.10)

That is, given an over-approximating function α we define post# as follows.

post#(ϕ, ρ) = α(post(ϕ, ρ)) (0.11)

Finally, we obtain ϕ#
reach :

ϕ#
reach = α(ϕinit) ∨

post#(α(ϕinit), ρR) ∨
post#(post#(α(ϕinit), ρR), ρR) ∨ . . .

=
∨
i≥0(post#)i(α(ϕinit), ρR)

(0.12)

The following lemma formalizes our over-approximation based reachability computation.

Lemma 1. ϕreach |= ϕ#
reach

0.3.1 Predicate abstraction

We construct an over-approximation using a given set of building blocks, so-called predicates. Each predicate
is a formula over the program variables V .

We fix a finite set of predicates Preds = {p1, . . . , pn}. Then, we define an over-approximation of ϕ that is
represented using Preds as follows.

α(ϕ) =
∧
{p ∈ Preds | ϕ |= p} (0.13)
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Example 11. For example, we consider a set of predicates Preds = {at `1, . . . , at `5, y ≥ z, x ≥ y}. We
compute α(at `2 ∧ y ≥ z ∧ x + 1 ≤ y) as follows. First, we check the logical consequence between the
argument to the abstraction function and each of the predicates. The results are presented in the following
table.

at `1 at `2 at `3 at `4 at `5 y ≥ z x ≥ y
at `2 ∧ y ≥ z ∧ x+ 1 ≤ y 6|= |= 6|= 6|= 6|= |= 6|=

Then, we take the conjunction of the entailed predicates as the result of the abstraction.

α(at `2 ∧ y ≥ z ∧ x+ 1 ≤ y) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z

If the set of predicates is empty then the result of applying predicate abstraction is true. For example, for
Preds = ∅ we obtain

α(at `2 ∧ y ≥ z ∧ x+ 1 ≤ y) =
∧
∅ = true .

If no predicates in Preds is entailed the resulting abstraction is true as well. For example, for Preds =
at 1, . . . , at 3 we have

α(at `5) =
∧
∅ = true .

�

The predicate abstraction function in Equation (0.13) approximates ϕ using a conjunction of predicates,
which requires n entailment checks where n is the number of given predicates.

Example 12. We use predicate abstraction to compute ϕ#
reach for our example program following the iterative

scheme presented in Equation 0.12. Let Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ y}. First, let ϕ1 be the
over-approximation of the set of initial states ϕinit :

ϕ1 = α(at `1) =
∧
{at `1} = at `1 .

We apply post# on ϕ1 wrt. each program transition and obtain

ϕ2 = post#(ϕ1, ρ1) = α(at `2 ∧ y ≥ z︸ ︷︷ ︸
post(ϕ1,ρ1)

) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z ,

whereas post#(ϕ1, ρ2) = · · · = post#(ϕ1, ρ5) =
∧
{false, . . . } = false.

Now we apply program transitions on ϕ2 using post#. The application of ρ1, ρ4, and ρ5 on ϕ2 results
in false for the following reason. ϕ2 requires at `2, but the transition relations ρ1, ρ4, and ρ5 are applicable
if either at `1 or at `3 holds. For ρ2 we obtain

post#(ϕ2, ρ2) = α(at `2 ∧ y ≥ z ∧ x ≤ y) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z .

The resulting set above is equal to ϕ2 and, therefore, is discarded, since we are already exploring states
reachable from ϕ2. For ρ3 we obtain

post#(ϕ2, ρ3) = α(at `3 ∧ y ≥ z ∧ x ≥ y)

=
∧
{at `3, y ≥ z, x ≥ y} = at `3 ∧ y ≥ z ∧ x ≥ y

= ϕ3 .

We compute an over-approximation of the set of states that are reachable from ϕ3 by applying post#. The
transitions ρ1, ρ2, and ρ3 results in false due to an inconsistency caused by the program counter valuations
in ϕ3 and the respective transition relations. For the transition ρ4 we obtain
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function AbstReach

input

Preds - predicates

begin

α := λϕ .
∧
{p ∈ Preds | ϕ |= p}

post# := λ(ϕ, ρ) . α(post(ϕ, ρ))

ReachStates# := {α(ϕinit )}
Parent := ∅
Worklist := ReachStates#

while Worklist 6= ∅ do
ϕ := choose from Worklist

Worklist := Worklist \ {ϕ}
for each ρ ∈ R do

ϕ′ := post#(ϕ, ρ)

if ϕ′ 6|=
∨

ReachStates# then

ReachStates# := {ϕ′} ∪ ReachStates#

Parent := {(ϕ, ρ, ϕ′)} ∪ Parent

Worklist := {ϕ′} ∪Worklist

return (ReachStates#,Parent)

end

Fig. 0.2 Algorithm AbstReach for abstract reachability computation wrt. a given finite set of predicates.

post#(ϕ3, ρ4) = α(at `4 ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z)
=

∧
{at `4, y ≥ z, x ≥ y} = at `4 ∧ y ≥ z ∧ x ≥ y

= ϕ4 .

For the transition ρ5, which corresponds to the assertion violation, we obtain

post#(ϕ3, ρ5) = α(at `5 ∧ y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z)
= false .

Any further application of program transitions does not compute any additional reachable states. We
conclude that ϕ#

reach = ϕ1 ∨ . . . ∨ ϕ4. Furthermore, since ϕ#
reach ∧ at `5 |= false the program is safe. �

0.3.2 Algorithm AbstReach

We combine the characterization of abstract reachability using Equation (0.12) with the predicat abstraction
function given in Equation (0.13) and obtain an algorithm AbstReach for computing ReachStates#. The
algorithm is shown in Figure 0.2.

AbstReach takes as input a finite set of predicates Preds and computes a set of formulas ReachStates#

that represents an over-approximation ϕ#
reach . Furthermore, AbstReach records its intermediate computa-

tion steps in a labeled tree Parent . (In the next section we will show how this tree can be used to discover
new predicates when a refined abstraction is needed.)

The initialization steps of AbstReach are shown in lines 1–5 of Figure 0.2. First, we construct the
abstraction function α according to Equation (0.13), and then use it to construct an over-approximation
post# of the post-condition function according to Equation (0.11). We initialize ReachStates# with an over-
approximation of the initial program states, which corresponds to the first disjunct in Equation (0.12). Since
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ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z ∧ x ≥ y

ϕ4 : at `4 ∧ y ≥ z ∧ x ≥ y

ρ1

ρ2

ρ3

ρ4

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

Fig. 0.3 Applying AbstReach on the program in Figure 0.1 and the set of predicates Preds = {false, at `1, . . . , at `5, y ≥
z, x ≥ y}. The nodes ϕ1, . . . , ϕ4 represent elements of ReachStates#. Labeled edges connecting the nodes represent Parent .

The dotted edge denotes the entailment relation between post#(ϕ2, ρ2) and ϕ2.

the initial states do not have any predecessors, Parent is initially empty. Finally, we create a worklist Worklist
that contains sets of states on which post# has not been applied yet.

The main part of AbstReach in lines 6–14 implements the iterative application of post# in Equa-
tion (0.12) using a while loop. The loop termination condition checks if Worklist has any items to process. In
case the worklist is not empty, we choose such an item, say ϕ, and remove it from the worklist. For brevity,
we leave the selection procedure unspecified, but note that various strategies are possible, e.g., breadth- or
depth-first search. Then, we apply post# wrt. each program transition, say ρ, on ϕ. Let ϕ′ be the result of
such an application. We add ϕ′ to ReachStates# if ϕ′ contains some program states that are not already
contained in one of the formulas in ReachStates#. We formulate the above test as an entailment check be-
tween ϕ′ and the disjunction of all formulas in ReachStates#. Often, there is a formula ψ in ReachStates#

such that ϕ′ |= ψ. In case that ϕ is added to ReachStates#, we record that ϕ was computed by applying ρ
on ϕ by adding a tuple (ϕ, ρ, ϕ′) to Parent . Finally, ϕ′ is put on the worklist.

The loop execution terminates after a finite number of steps, since the range of post# is finite (and is
of size 2n where n is the size of Preds). The disjunction of formulas in ReachStates# is logically equivalent

to ϕ#
reach .

Example 13. We describe the application of AbstReach on our example program when Preds =

{false, at `1, . . . , at `5, y ≥ z, x ≥ y}. Figure 0.3 provides a pictorial illustration. Example 12 provides

details on computed over-approximations of post-conditions.

After constructing α and post# for the given predicates, we compute ϕ1 = (at `1) and put it into

ReachStates# and into Worklist . See the node ϕ1 in Figure 0.3.

During the first loop iteration, we choose ϕ1 to be the element taken from the worklist. Now we compute

post# wrt. each program transition. For ρ1 we obtain ϕ2 = (at `2 ∧ y ≥ z). The entailment check ϕ2 |=∨
ReachStates# fails, since

∨
ReachStates# is equal to ϕ1 and ϕ2 6|= ϕ1. Hence, ϕ2 is added to ReachStates#.

As a result, the tuple (ϕ1, ρ1, ϕ2) is added to Parent and ϕ2 becomes a worklist item. See the node ϕ2 as

well as the edge between ϕ1 and ϕ2 in Figure 0.3. We continue with applying program transitions on ϕ1.

For ρ2 we obtain post#(ϕ1, ρ2) = false. Since false |=
∨

ReachStates# there is no addition to ReachStates#.

Similarly, applying ρ3, . . . , ρ5 does not modify ReachStates#.

We start the second loop iteration with ReachStates# = {ϕ1, ϕ2}, Worklist = {ϕ2}, and Parent =

{(ϕ1, ρ1, ϕ2)}. We choose ϕ2 from the worklist. When applying post# on ϕ2 only ρ2 and ρ3 result sets of

successor states that are not equal to false. We obtain post#(ϕ2, ρ2) = (at `2 ∧ y ≥ z). Since (at `2 ∧ y ≥ z)
entails ϕ2 and hence

∨
ReachStates#, nothing is added to ReachStates# and we proceed directly with ρ3.

For ϕ3 = post#(ϕ2, ρ3) = (at `3 ∧ y ≥ z ∧ x ≥ y) we observe that ϕ3 6|=
∨

ReachStates#. Hence, we add ϕ3

11



ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z

ϕ4 : at `4 ∧ y ≥ z ϕ5 : at `5 ∧ y ≥ z

ρ1

ρ2

ρ3

ρ4 ρ5

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

ϕ5 = post#(ϕ3, ρ5)

Fig. 0.4 Abstract reachability computation with Preds = {false, at `1, . . . , at `5, y ≥ z}.

to ReachStates# and Worklist , while (ϕ2, ρ3, ϕ3) is recorded in Parent . See the node ϕ3 as well as the edge

between ϕ2 and ϕ3 in Figure 0.3.

At the beginning of the third loop iteration we have ReachStates# = {ϕ1, ϕ2, ϕ3}, Worklist = {ϕ3}, and

Parent = {(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3)}. We choose ϕ3 from the worklist. After computing ϕ4 by applying ρ4

and discovering that ϕ4 6|=
∨

ReachStates#, we add ϕ4 following the algorithm. See the node ϕ4 as well as

the edge between ϕ3 and ϕ4 in Figure 0.3. Since all other program transition yield false we proceed with the

next iteration.

The fourth loop iteration removes ϕ4 from the worklist, but does not add any new elements to

it. Hence AbstReach terminates and outputs ReachStates# = {ϕ1, . . . , ϕ4} as well as Parent =

{(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3), (ϕ3, ρ4, ϕ4)}. �

Monotonicity:
∀ϕ1 ∀ϕ2 : (ϕ1 |= ϕ2)→ (α(ϕ1) |= α(ϕ2))

0.4 Refining abstraction for reachability

The algorithm AbstReach requires a set of predicates in order to compute an over-approximation of
the reachable program states. Finding the right set of predicates that yields a sufficiently precise over-
approximation is a difficult task.

0.4.1 Analysis of counterexample paths

Example 14. In Example 13, the provided set of predicates was adequate for proving program safety. Omitting

just one predicate, e.g., provide the predicates Preds = {false, at `1, . . . , at `5, y ≥ z} without x ≥ y leads to

an over-approximation ϕ#
reach that has a non-empty intersection with the error states. As shown in Figure 0.4,

we have ϕ5 ∧ ϕerr 6|= false. That is, AbstReach fails to prove the property without the predicate x ≥ y.

We analyse the reason for the excessive over-approximation. Figure 0.4 shows that the Parent relation

records a sequence of three steps leading to the computation of ϕ5. First, we apply ρ1 to ϕ1 and compute ϕ2.

Then, ϕ3 is obtained by applying ρ3 to ϕ2. Finally, ρ5 is applied to ϕ3 and results in ϕ5. Thus, we note

that the sequence of program transitions ρ1, ρ3, and ρ5 determined ϕ5. We refer to this sequence as a
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counterexample path. Using this path and the functions α and post# corresponding to the current set of

predicates we obtain

ϕ5 = post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) .

That is, ϕ5 is equal to the over-approximation of the post-condition computed along the counterexample

path.

Now we check if the counterexample path also leads to the error states when no over-approximation is

applied. First we compute

post(post(post(ϕinit , ρ1), ρ3), ρ5) = post(post(at `2 ∧ y ≥ z, ρ3), ρ5)

= post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ5)

= false .

Hence, by executing the program transitions ρ1, ρ3, and ρ5 it is not possible to reach any error state. We

conclude that the over-approximation is too coarse, at least when dealing with the above path.

We need a more precise over-approximation that will prevent post# from including states that lead to error

states along the path ρ1, ρ3, and ρ5. Concretely, we need a refined abstraction function α and a corresponding

post# such that the execution of AbstReach along the counterexample path does not compute a set of

states that contains some error states:

post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) ∧ ϕerr |= false .

We consider the intermediate steps of the above condition and define sets of states ψ1, . . . , ψ4 that provide

an adequate over-approximation along the path as follows.

ϕinit |= ψ1

post(ψ1, ρ1) |= ψ2

post(ψ2, ρ3) |= ψ3

post(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

The over-approximation given by ψ1, . . . , ψ4 is adequate since it guarantees that no error state is reached,

while still allowing additional states to be reachable. For example, we consider the following solution to the

above condition.

ψ1 ψ2 ψ3 ψ4

at `1 at `2 ∧ y ≥ z at `3 ∧ x ≥ z false

Due to a particularly useful property of predicate abstraction function and the post-condition function,

which we discuss later in this section, we can use the obtained solution to refine α in the following way. By

adding ψ1, . . . , ψ4 to the set of predicates Preds we guarantee that the resulting α and post# are sufficiently

precise to show that no error state is reachable along the path ρ1, ρ3, and ρ5. Formaly, we obtain

13
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function MakePath

input

ψ - reachable abstract state

Parent - predecessor relation

begin

path := empty sequence

ϕ′ := ψ

while exist ϕ and ρ such that (ϕ, ρ, ϕ′) ∈ Parent do

path := ρ . path

ϕ′ := ϕ

return path

end

Fig. 0.5 Path computation.

1

2

3

4

5

function FeasiblePath

input

ρ1 . . . ρn - path

begin

ϕ := post(ϕinit , ρ1 ◦ . . . ◦ ρn)

if ϕ ∧ ϕerr 6|= false then

return true

else

return false

end

Fig. 0.6 Feasibility of a path.

α(ϕinit) |= ψ1

post#(ψ1, ρ1) |= ψ2

post#(ψ2, ρ3) |= ψ3

post#(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

�

We put the above approach for analysing counterexample compute by AbstReach into algorithms
MakePath, FeasiblePath, and RefinePath.

The algorithms MakePath is shown in Figure 0.5. It takes as input a rechable abstract state ψ together
with a Parent relation. We view Parent as a tree where ψ occurs as a node. MakePath outputs a sequence
of program transitions that labels the tree edges connecting ψ with the root of the tree. The sequence is
constructed iteratively by a backward traversal starting from the input node. The variable path keep track
of the construction.

Example 15. For our example tree in Figure 0.4 we construct the path by making a

call MakePath(ϕ5,Parent). Then, path is extended with the transitions ρ5, ρ3, and ρ1 by consider-

ing the edges (ϕ3, ρ5, ϕ5), (ϕ2, ρ3, ϕ3), and (ϕ1, ρ1, ϕ2), respectively. Finally, path = ρ1ρ3ρ5 is returned as

output. �
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function RefinePath

input

ρ1 . . . ρn - path

begin

ϕ0, . . . , ϕn := compute such that

(ϕinit |= ϕ0) ∧

(post(ϕ0, ρ1) |= ϕ1) ∧ . . . ∧ (post(ϕn−1, ρn) |= ϕn) ∧

(ϕn ∧ ϕerr |= false)

return {ϕ0, . . . , ϕn}
end

Fig. 0.7 Counterexample guided discovery of predicates.

The algorithms FeasiblePath is shown in Figure 0.6. It takes as input a sequence of program transitions
ρ1 . . . ρn and checks if there is a computation that is produced by this sequence. The check uses the post-
condition function and the relational composition of transitions.

Example 16. When applying FeasiblePath on our example path ρ1ρ3ρ5 we obtain the following interme-

diate results. First, the relational composition of transitions yields

ρ1 ◦ ρ3 ◦ ρ5 = false .

Hence, FeasiblePath sets ϕ to false and then returns false.

The algorithms RefinePath is shown in Figure 0.7. It takes as input a sequence of program transitions
ρ1 . . . ρn and computes sets of states ϕ0, . . . , ϕn satisfying the following conditions. First, we have ϕinit |= ϕ0

and ϕn ∧ ϕerr |= false. Then, for each i ∈ 1..n we obtain post(ϕi−1, ρi) |= ϕi. Thus, ϕ0, . . . , ϕn computed
by RefinePath can be used for refining predicate abstraction. If ϕ0, . . . , ϕn are added to Preds then the
resulting α and post# guarantee that

α(ϕinit) |= ϕ0

post#(ϕ0, ρ1) |= ϕ1

. . .

post#(ϕn−1, ρn) |= ϕn

ϕn ∧ ϕerr |= false .

Here, we intensionally omit details of a particular algorithm for finding ϕ0, . . . , ϕn that satisfy the above
conditions. We discuss possible alternatives in Section 0.5.

Example 17. As discussed in Example 14, the application of RefinePath on ρ1ρ3ρ5 yields a sequence of sets

of states that can refine the abstraction to become sufficiently precise at least for dealing with the considered

path. �

0.4.2 Algorithm for counterexample guided abstraction refinement

We put together the building blocks described in the previous section into an algorithm AbstRefineLoop
that verifies reachability properties using predicate abstraction and its counterexample guided refinement.
See Figure 0.8.
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function AbstRefineLoop

begin

Preds := ∅
repeat

(ReachStates#,Parent) := AbstReach(Preds)

if exists ψ ∈ ReachStates# such that ψ ∧ ϕerr 6|= false then

path := MakePath(ψ,Parent)

if FeasiblePath(path) then

return “counterexample path: path ”

else

Preds := RefinePath(path) ∪ Preds

else

return “program is correct”

end.

Fig. 0.8 Predicate abstraction and refinement loop.

ϕ1 : at `1

ϕ2 : at `2

ϕ3 : at `3

ϕ4 : at `4 ϕ5 : at `5

ρ1

ρ2

ρ3

ρ4 ρ5

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

ϕ5 = post#(ϕ3, ρ5)

Fig. 0.9 Abstract reachability computation with Preds = {false, at `1, . . . , at `5}.

Given a program, AbstRefineLoop discovers a proof or a counterexample by repeatedly applying the
following steps. First, we compute an over-approximation ϕ#

reach of the set of reachable states using an
abstraction function defined wrt. the set of predicates Preds, which is empty initially. The over-approximation
ϕ#
reach is represented by a set of formulas ReachStates#, where each formula represents a set of states. If the set

of error states is disjoint from the computed over-approximation, then AbstRefineLoop stops the iteration
process and reports that the program is correct. Otherwise, we consider a formula ψ in ReachStates# that
witnesses the intersection with the error states and use ψ in an attempt to refine the abstraction. Refinement
is only possible if the discovered intersection is caused by the imprecision of the currently applied abstraction
function. We clarify this question by first constructing a sequence of program transitions that was traversed
during the computation of ψ. This sequence, called path, is analyzed using FeasiblePath. If there is a
program computation that follows path, then AbstRefineLoop stops the iteration and reports that path
is a counterexample. In case path is not feasible, we compute a set of predicates that refines the abstraction
function by applying an algorithm RefinePath on path.

Example 18. We illustrate AbstRefineLoop using our example program from Figure 0.1. To make the

illustration more vivid, we assume that Preds = {false, at `1, . . . , at `5} is the initial set of predicates, i.e.,

we anticipate that for proving our example correct we need to keep track of the program counter.

We start the first iteration by applying ReachStates#. The result is the set of formulas ReachStates#

connected by the relation Parent as shown in Figure 0.9. In this figure, Parent is denoted by solid arrows

that connect the formulas. We observe that ϕ5 has a non-empty intersection with ϕerr , hence we proceed by

setting ψ to ϕ5. By applying MakePath we obtain path = ρ1ρ3ρ5. At the next step, FeasiblePath reports
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ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z ∧ x ≥ z

ϕ4 : at `4 ∧ y ≥ z ∧ x ≥ z

ρ1

ρ2

ρ3

ρ4

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

Fig. 0.10 Applying AbstReach on the program in Figure 0.1 and the set of predicates Preds = {false, at `1, . . . , at `5, y ≥
z, x ≥ z}.

that this path is not feasible, hence we proceed with the abstraction refinement. RefinePath discoveres

that the predicates y ≥ z and x ≥ z are sufficient to refine the abstraction such that path is no longer leading

to an error state even under abstraction.

We start the second iteration of AbstRefineLoop with the new set of predicates Preds =

{false, at `1, . . . , at `5, y ≥ z, x ≥ z}, which contains the predicates that were discovered during the first

iteration. See Figure 0.10 for the obtained set ReachStates# and relation Parent . We observe that each

formula in ReachStates# has an empty intersection with ϕerr , hence AbstRefineLoop reports that the

program is correct. �

0.5 Solving refinement constraints

The algorithm RefinePath in Figure 0.7 takes as input an infeasible sequence of program transitions
ρ1 . . . ρn and computes sets of states ϕ0, . . . , ϕn satisfying the following conditions.

ϕinit |= ϕ0

post(ϕ0, ρ1) |= ϕ1

. . .

post(ϕn−1, ρn) |= ϕn

ϕn ∧ ϕerr |= false .

Since ρ1 . . . ρn is infeasible, the above conditions are satisfiable. In general, several solutions may exist. We
describe how the least, the greatest, and an intermediate solution can be computed.

0.5.1 Least solution

We obtain the least solution by applying the post-condition function in the following way.
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ϕ0 = ϕinit

ϕ1 = post(ϕ0, ρ1)

. . .

ϕn = post(ϕn−1, ρn)

(0.14)

Note that since the least solution ensures that for each 1 ≤ i ≤ n we have

ϕi = post(ϕinit , ρ1 ◦ . . . ◦ ρi) ,

and guarantee that ϕn ∧ ϕerr |= false.
Sometimes the least solution is not useful for refining the abstraction, since the resulting abstraction is

too precise. As a result, the iteration in AbstRefineLoop may not terminate as the abstract reachability
computation is almost equivalent to the reachability computation without abstraction.

Example 19. We illustrate how a least solution is computed using an example program shown in Figure 0.1.

Let ρ1ρ3ρ5 be a counterexample path discovered by AbstRefineLoop. For this path, we obtain the

following least solution of the constraints defined by RefinePath.

ϕ0 = ϕinit = at `1

ϕ1 = post(ϕ0, ρ1) = (at `2 ∧ y ≥ z)

ϕ2 = post(ϕ1, ρ3) = (at `3 ∧ y ≥ z ∧ x ≥ y)

ϕ3 = post(ϕ2, ρ5) = false

The obtained refinement will ensure that the path ρ2ρ3ρ5 will not be considered a counterexample during

subsequent iterations of the refinement loop in AbstRefineLoop. �

0.5.2 Greatest solution

First, we define an auxiliary weakest pre-condition function wp as follows. Let ϕ be a formula over V and
let ρ be a formula over V and V ′. Then, we define:

wp(ϕ, ρ) = ∀V ′ : ρ→ ϕ[V ′/V ]. (0.15)

For example, a transition ρ2 from Figure 0.1 results in the following weakest precondition.

wp(at `2 ∧ x ≥ z, ρ2)

= ∀V ′ : pc = `2 ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z ∧ pc′ = `2

→ pc′ = `2 ∧ x′ ≥ z
= ¬(∃V ′ : pc = `2 ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z ∧ pc′ = `2 ∧

¬(pc′ = `2 ∧ x′ ≥ z))
= ¬(∃V ′ : pc = `2 ∧ x+ 1 ≤ y ∧ ¬(`2 = `2 ∧ x+ 1 ≥ z))
= (pc = `2 ∧ x+ 1 ≤ y → `2 = `2 ∧ x+ 1 ≥ z)
= (at `2 ∧ x+ 1 ≤ y → x+ 1 ≥ z)

We obtain the greatest solution of the refinement constraints for a given counterexample path as follows.
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ϕn = ¬ϕerr

ϕn−1 = wp(ϕn, ρn)

. . .

ϕ0 = wp(ϕ1, ρ1)

(0.16)

That is, the greatest solution is computed incrementally by traversing the counterexample path backwards.
Similarly to the least solution, sometimes the greatest solution is not useful for refining the abstraction,

since the resulting abstraction is too coarse. As a result, the iteration in AbstRefineLoop may not terminate
as the abstract reachability computation is almost equivalent to the backward reachability computation
without abstraction that expands the set of states definitely leading to an error state.

Example 20. We illustrate how a greatest solution is computed using an example program shown in Figure 0.1.

Let ρ1ρ3ρ5 be a counterexample path discovered by AbstRefineLoop. For this path, we obtain the

following greatest solution of the constraints in RefinePath.

ϕ3 = ¬ϕerr = ¬at `5

ϕ2 = wp(ϕ3, ρ5) = (at `3 → x ≥ z)

ϕ1 = wp(ϕ2, ρ3) = (at `2 ∧ x ≥ y → x ≥ z)

ϕ0 = wp(ϕ1, ρ1) = true

Again, the obtained refinement will result in the discovery of the counterexample path ρ2ρ3ρ5 during the

next iteration in AbstRefineLoop, as witnessed by the following validities.

ϕinit |= ϕ0

post(ϕ0, ρ1) = (at `2 ∧ y ≥ z) |= ϕ1

post(ϕ1, ρ3) = (at `3 ∧ x ≥ y ∧ x ≥ z) |= ϕ2

post(ϕ2, ρ5) = false |= ϕ3

We observe that the reachability computation using refined abstraction does not reach any error states along

the path ρ1ρ3ρ5. �

0.5.3 Intermediate solution using interpolation

We illustrate how an intermediate solution can be computed by a technique called interpolation. Interpolation
takes as input two mutually unsatisfiable formulas ϕ1 and ϕ2, i.e., ϕ1 |= ϕ2 |= false, and returns a formula
ϕ such that i) ϕ is expressed over common symbols of ϕ1 and ϕ2, ii) ϕ1 |= ϕ, and iii) ϕ ∧ ϕ2 |= false. Let
inter be an interpolation function such that inter(ϕ1, ϕ2) is an interpolant for ϕ1 and ϕ2.

The following sequence of interpolation computations can be used to find a solution for constraints defined
by RefinePath.

ϕ0 = inter(ϕinit , (ρ1 ◦ . . . ◦ ρn) ∧ ϕerr [V ′/V ])

ϕ1 = inter(post(ϕ0, ρ1), (ρ2 ◦ . . . ◦ ρn) ∧ ϕerr [V ′/V ])

. . .

ϕn−1 = inter(post(ϕn−2, ρn−1), ρn ∧ ϕerr [V ′/V ])

ϕn = inter(post(ϕn−1, ρn), ϕerr [V ′/V ])

(0.17)
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Intermediate solutions can avoid the deficiencies of least and greatest solutions described above, although
they still do not guarantee convergence of the abstraction refinement loop.

Example 21. We illustrate how an intermediate solution is computed using an example program shown in

Figure 0.1.

Let ρ1ρ3ρ5 be a counterexample path discovered by AbstRefineLoop. For this path, we obtain the

following intermediate solution of the constraints in RefinePath.

ϕ0 = inter(ϕinit , (ρ1 ◦ ρ3 ◦ ρ5) ∧ ϕerr [V ′/V ]) = true

ϕ1 = inter(post(ϕ0, ρ1), (ρ3 ◦ ρ5) ∧ ϕerr [V ′/V ]) = y ≥ z

ϕ2 = inter(post(ϕ1, ρ3), ρ5 ∧ ϕerr [V ′/V ]) = x ≥ z

ϕ3 = inter(post(ϕ2, ρ5), ϕerr [V ′/V ]) = false

The following validities show that ρ1ρ3ρ5 will not be considered a counterexample during subsequent refine-

ment iterations.

ϕinit |= ϕ0

post(ϕ0, ρ1) = (at `2 ∧ y ≥ z) |= ϕ1

post(ϕ1, ρ3) = (at `3 ∧ x ≥ y ∧ y ≥ z) |= ϕ2

post(ϕ2, ρ5) = false |= ϕ3

�
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