
Homework 1

Exercise 2 Prove or give a counterexample: ((∀y : P (y)) ∨ (∀z : Q(z)))→ (∀x : P (x) ∨Q(x)).

The implication holds as it is proven below:

1. Let us assume ((∀y : P (y)) ∨ (∀z : Q(z))). Then we apply reasoning based on cases; i.e. we consider first the case where
((∀y : P (y)) holds but not (∀z : Q(z)), and then the case where (∀z : Q(z)) holds but not ((∀y : P (y)).

2. first case: From ((∀y : P (y)), we get P (x) for any arbitrary x.

3. P (x) ∨Q(x) holds for any predicate Q(x) on any arbitrary x.

4. (∀x : P (x) ∨Q(x)) follows by introducing ∀.

5. second case: From ((∀z : Q(z)), we get Q(x) for any arbitrary x.

6. P (x) ∨Q(x) holds for any predicate P (x) on any arbitrary x.

7. (∀x : P (x) ∨Q(x)) follows by introducing ∀.

Exercise 3 Prove or give a counterexample: (∀x : P (x) ∨Q(x))→ ((∀y : P (y)) ∨ (∀z : Q(z))).

The implication does not hold. A counterexample can be the interpretation I = {D = {1, 2}, P (1), Q(2)}.

Homework 2

Exercise 1 Prove the following equivalence: ∀v∀v′ : H(v) ∧ R(v, v′) → H(v′) if and only if forall s and for all s′ it holds if
s |= H(v) and (s, s′) |= R(v, v′) then s′ |= H(v).

The proof depends mainly of the semantics of the satisfaction statements such as s |= H(v) which states that some s is an
instance of H(v) or H(s) holds. The equivalence is shown by proving that one follows from the other in both directions.

=⇒ proof

1. Let us start by assuming ∀v∀v′ : H(v) ∧R(v, v′)→ H(v′).

2. To show that s |= H(v) and (s, s′) |= R(v, v′) =⇒ s′ |= H(v) for all s and s′, we also assume s |= H(v) and (s, s′) |= R(v, v′)
for arbitrary s and s′.

3. By the semantics of |=, H(s) and R(s, s′) follows from s |= H(v) and (s, s′) |= R(v, v′).

4. H(s′) follows from (1), which is equivalent to s′ |= H(v).

⇐ proof

1. Let us start by assuming that forall s and for all s′, if it holds s |= H(v) and (s, s′) |= R(v, v′) then it also holds s′ |= H(v).

2. Let us also assume H(v) ∧R(v, v′) for arbitrary v and v′.

3. From the conjunction, we have H(v) which is equivalent to v |= H(s) and R(v, v′)whichisequivalentto(v, v′) |= R(s, s′).

4. We get v′ |= H(s) from (1). But this is equivalent to H(v′).

Exercise 2 Prove that if a program is safe then there exists H(v) (in an expressive assertion language) such that
∀v : ϕinit(v)→ H(v) : C1

∀v∀v′ : H(v) ∧R(v, v′)→ H(v′) : C2

∀v : H(v) ∧ ϕerr (v)→ ⊥ : C3

Let H(v) ≡ ϕreach(v) where ϕreach(v) is the set of reachable states of the program. By the definition of reachability, H(v)
satisfies C1 and C2. But since it is given that the program is safe, ϕreach(v), and hence H(v) satisfy C3.



Homework 3

Exercise 2 Prove that upon termination of BRA, if a node n is reachable from the initial node n0 via the set of edges E, i.e.,
(n0, n) ∈ E∗, then n ∈ C.

We prove the theorem by induction on the length of the path k from n0 to n i.e. k = |(n0, n)|.
Our induction hypothesis Hyp(k) is: Each node n that was reached from n0 through a path of length k is in C, i.e., n ∈ C .

Base case: For k = 0, we have n = n0 and (n0, n0) ∈ E∗. Since n0 ∈ C, Hyp(0) holds.

Step: We assume that for k the induction hypothesis Hyp(k) holds, i.e., if a node n is reachable from the initial node n0 in k
steps, i.e., (n0, n) ∈ E∗ such that k = |(n0, n)|, then n ∈ C.

We prove Hyp(k + 1), which amounts to proving that n reached during the (k + 1)th step from n0 by following the if branch is
in C. The case when the (k + 1)th iteration goes through the else branch does not change the reachable states. For any nk+1

that is reachable from n0 in k + 1 steps, i.e. |(n0, nk+1)| = k + 1, there exists nk reachable from n0 such that |(n0, nk)| = k and
(nk, nk+1) ∈ E. By the induction hypothesis, nk ∈ C. nk+1 ∈ C follows immediately.

Exercise 3 Extend the BRA algorithm to detect the existence of cycles in a given finite graph. The extended algorithm returns
true iff there exists n ∈ N such that (n0, n) ∈ E∗ and (n, n) ∈ E+.

This is the algorithm to detect existence of cycles in a given finite graph. It makes use of a modified version of BRA.

algorthm detect_cycle

input

N : set of nodes

n0 : start node, where n0 \in N

E : set of edges, where E \subseteq N \times N

begin

(C, D) := BRA (N, N0, Edges)

foreach s in C

(Cs,Ds) := BRA (N, s, Edges)

if (s \in Ds) then

return true

return false

end

This is the moified version of BRA that is used in defining the cycle detection algorithm above.

algorithm BRA

input

N : set of nodes

n0 : start node, where n0 \in N

E : set of edges, where E \subseteq N \times N

var

C : nodes reached so far

done : Boolean flag

D : auxiliary set of nodes

begin

C := {n0}

done := false

while \neg done do

D := { d \in N | \exists c \in C: (c, d) \in E }

if \neg (D \subseteq C) then

C := C \cup D

else

done := true

od

return (C, D)

end



Homework 4

Exercise 2

1. ∀φ : φ |= α(φ)

(a) we have (φ |= p1 ∧ φ |= p2)→ φ |= p1 ∧ p2
(b) α(φ) ≡ ∧{pi ∈ P : φ |= pi}
(c) Let the set {pi ∈ P : φ |= pi} has n elements such that α(φ) = p1 ∧ p2 ∧ · · · ∧ pn. By definition of α(φ) we have

φ |= p1, φ |= p2, . . . , and φ |= pn

(d) By (a), we have φ |= p1 ∧ p2 ∧ · · · ∧ pn, and p1 ∧ p2 ∧ · · · ∧ pn ≡ α(φ) follows from (b). Therefore, φ |= α(φ).

2. α is monotonic, i.e. ∀φ∀ψ : (φ |= ψ)→ (α(φ) |= α(ψ))

(a) ∀σ1σ2 : σ1 ∧ σ2 |= σ1

(b) Let’s assume φ |= ψ

(c) By the definition of α, we have α(φ) ≡ ∧{pi ∈ P : φ |= pi} and α(ψ) ≡ ∧{pi ∈ P : ψ |= pi}.
(d) An important observation here is that any predicate in the set {pi ∈ P : ψ |= pi} is also in {qi ∈ P : φ |= qi} since

from φ |= ψ by (b) and each ψ |= pi we always have φ |= pi. i.e {pi ∈ P : φ |= pi} is the superset of {pi ∈ P : ψ |= pi}.
(e) Therefore, we have α(φ) ≡ α(ψ) ∧ q1 ∧ · · · ∧ qm where q1, . . . , qm are predicates that are in {pi ∈ P : φ |= pi} but not

in {pi ∈ P : ψ |= pi}.
(f) From α(φ) |= α(ψ) ≡ α(ψ) ∧ q1 ∧ · · · ∧ qm |= α(ψ), and by (a) we can see that α(ψ) ∧ q1 ∧ · · · ∧ qm |= α(ψ) holds. i.e.

α(φ) |= α(ψ).

(g) We now introduce the implication since the satisfaction was proven based on the assumption in (b). i.e (φ |= ψ) →
(α(φ) |= α(ψ)) .

(h) And finally, universal quanitification is done on both variables: ∀φ∀ψ : (φ |= ψ)→ (α(φ) |= α(ψ))

3. ∀φ∀R1∀R2 : post(φ,R1 ∨R2) ⇐⇒ ∀φ∀R1∀R2 : (post(φ,R1) ∨ post(φ,R2))

(a) assume ∀φ∀R1∀R2 : post(φ,R1 ∨R2)

(b) post(φ,R1 ∨R2) by applying ∀ elimination

(c) ∃V ” : φ(V )[V ”/V ] ∧ (R1(V, V ′)[V ”/V ][V/V ′] ∨R2(V, V ′)[V ”/V ][V/V ′]) by reducing post into its definition

(d) ∃V ” : (φ(V ”)∧ (R1(V ”, V ))∨∃V ” : (φ(V ”)∧R2(V ”, V )) by distributing the conjunction and the existential quantifier
over the disjunction

(e) post(φ,R1) ∨ post(φ,R2) by rewriting back in terms of post

(f) ∀φ∀R1∀R2 : (post(φ,R1) ∨ post(φ,R2)) by applying ∀ introduction

(g) ∀φ∀R1∀R2 : post(φ,R1 ∨R2)→ ∀φ∀R1∀R2 : (post(φ,R1) ∨ post(φ,R2)) by implication introduction

(h) assume ∀φ∀R1∀R2 : (post(φ,R1) ∨ post(φ,R2))

(i) (post(φ,R1) ∨ post(φ,R2)) by applying ∀ elimination

(j) (∃V ” : φ(V )[V ”/V ]∧R1(V, V ′)[V ”/V ][V/V ′])∨ (∃V ” : φ(V )[V ”/V ]∧R2(V, V ′))[V ”/V ][V/V ′]) by reducing post into
its definition

(k) ∃V ” : φ(V ”) ∧ (R1(V ”, V ) ∨R2(V ”, V )) by collecting terms over the existential quantifier and φ

(l) post(φ,R1 ∨R2) by rewriting back in terms of post

(m) ∀φ∀R1∀R2 : post(φ,R1 ∨R2) by applying ∀ introduction

(n) ∀φ∀R1∀R2 : (post(φ,R1) ∨ post(φ,R2))→ ∀φ∀R1∀R2 : post(φ,R1 ∨R2) by implication introduction

4. 1 post is monotonic, i.e. ∀φ∀ψ : (φ |= ψ)→ (post(φ, ρ) |= post(ψ, ρ))

(a) ∀φ∀ψ∀σ : φ ∧ σ |= ψ ∧ σ conjuction on both sides will not affect satisfaction of the entailment.

(b) assume φ |= ψ

(c) we have φ(V ) |= ψ(V ) by explicitly putting the variable V with the formulas

(d) φ(V ) ∧ ρ(V, V ′) |= ψ(V ) ∧ ρ(V, V ′) by (a)

(e) ∃V ” : (φ(V )[V ”/V ] ∧ ρ(V ”, V )[V ”/V ][V/V ′]) |= ∃V ” : ψ(V ”)[V ”/V ] ∧ ρ(V ”, V )[V ”/V ][V/V ′] variable substitution
and ∃ introduction

(f) post(φ, ρ) |= post(ψ, ρ)) by the definition of post

(g) (φ |= ψ)→ (post(φ, ρ) |= post(ψ, ρ)) by implication introduction from (b) and (f).

(h) ∀φ∀ψ : (φ |= ψ)→ (post(φ, ρ) |= post(ψ, ρ)) by introducing ∀

5. 2 post# is monotonic, i.e. ∀φ∀ψ : (φ |= ψ)→ (post#(φ, ρ) |= post#(ψ, ρ))

1Not in the homework
2Not in the homework but important for proving exercise 3



The proof follows directly from the monotonicity proofs for post and α above.

(a) assume φ |= ψ

(b) post(φ, ρ) |= post(ψ, ρ)) follows since post is monotonic

(c) α(post(φ, ρ)) |= α(post(ψ, ρ)) follows since α is monotonic

(d) post#(φ, ρ) |= post#(ψ, ρ)) by definition of post#

(e) (φ |= ψ)→ (post#(φ, ρ) |= post#(ψ, ρ)) by implication introduction from (a) and (d).

(f) ∀φ∀ψ : (φ |= ψ)→ (post#(φ, ρ) |= post#(ψ, ρ)) by introducing ∀

Exercise 3
Let R be a transition relation over V and V ′. We define post(φ) = ∃V ” : φ[V ”/V ] ∧R[V ”/V ][V/V ′].

Prove that
∨
i≥0

post#
i

(φinit) |=
∨
j≥0

post#
j

(α(φinit)).

Here we use the fact that proving ∀Ai∃Bj : Ai |= Bj is enough to prove that A0 ∨A1 ∨ . . . |= B0 ∨B1 ∨ . . .

1. φ |= α(φ) (as proven in the previous exercise)

2. post#(φ) |= post#(α(φ)) follows since post# is monotonic

3. post#
i

(φ) |= post#
i

(α(φ)) follows from the fact that applying post# i times on both side keeps the entailment since post#

is monotonic.

4. Therefore, ∀i∃j : post#
i

(φ) |= post#
j

(α(φ)) holds when j = i.



Homework 5

Question 1
We define a constraint C1 over φ1, φ2, φ3 as follows:

C1(φ1, φ2, φ3) ≡
ϕinit |= φ1 ∧

post(φ1, ρ1) |= φ2 ∧
post(φ2, ρ2) |= φ3 ∧
φ3 ∧ ϕerr |= false

Prove that for each φ1, φ2, and φ3, if C1(φ1, φ2, φ3) then ϕinit ∧ (ρ1 ◦ ρ2) ∧ ϕerr [V ′/V ] |= false.

Let us assume C1(φ1, φ2, φ3) holds.

1. ϕinit |= φ1 from the first conjunct.

2. post(ϕinit , ρ1) |= post(φ1, ρ1) since post is monotonic.

3. From the second conjuct and by (2), we have post(ϕinit , ρ1) |= φ2.

4. post(post(ϕinit , ρ1), ρ2) |= post(φ2, ρ2) since post is monotonic.

5. From the third conjunct and by (4), we have post(post(ϕinit , ρ1), ρ2) |= φ3.

6. By adding the same conjunct ϕerr on both sides, we have post(post(ϕinit , ρ1), ρ2) ∧ ϕerr |= φ3 ∧ ϕerr .

7. From the forth conjunct and by (6), we have post(post(ϕinit , ρ1), ρ2) ∧ ϕerr |= false.

8. But since post(post(φ, ρ1), ρ2) is equivalent to post(φ, ρ1 ◦ ρ2) (check out Question 3 below for the proof), post(ϕinit , ρ1 ◦
ρ2) ∧ ϕerr |= false.

Question 2
We define a constraint C2 over φ1, φ2 as follows:

C2(φ1, φ2) ≡
ϕinit |= φ1 ∧

post(φ1, ρ1) |= φ2 ∧
post(φ2, ρ2) ∧ ϕerr |= false

Prove that C1 is satisfiable if and only if C2 is satisfiable, where C1 is defined in the previous question.

C1(φ1, φ2, φ3) =⇒ C2(φ1, φ2)

1. Let us assume C1(φ1, φ2, φ3) holds. The first and second conjuncts of C2 follows directly from the first and second conjuncts
of C1.

2. We take the third conjunct from C1 and add the same conjunct ϕerr on both sides of the entailment to get post(φ2, ρ2) ∧
ϕerr |= φ3 ∧ ϕerr .

3. From the forth conjunct of C1 and (2), we get post(φ2, ρ2)∧ϕerr |= false which is the thrid conjunct of C2. This completes
the proof for C1(φ1, φ2, φ3) =⇒ C2(φ1, φ2).

C2(φ1, φ2) =⇒ C1(φ1, φ2, φ3)

1. Let us assume C2(φ1, φ2) holds. The first and second conjuncts of C1 follows directly from the first and second conjuncts
of C2.

2. Let φ3 = post(φ2, ρ2). Since ∀ψ : ψ |= ψ, we get post(φ2, ρ2) |= φ3. This proves the third conjunct of C1.

3. In addition, from φ3 = post(φ2, ρ2) and the third conjunct of C2, we get φ3 ∧ ϕerr |= false which is the forth conjunct of
C1. This completes the proof for C2(φ1, φ2) =⇒ C1(φ1, φ2, φ3).



Question 3 Prove that post(post(φ, ρ1), ρ2) is equivalent to post(φ, ρ1 ◦ ρ2).

1. From post(post(φ, ρ1), ρ2), we reach ∃v′′ : (∃v′ : φ(v′) ∧ ρ1(v′, v′′)) ∧ ρ2(v′′, v)

2. For arbitrary constants a and b, this gives us (φ(a) ∧ ρ1(a, b)) ∧ ρ2(b, v) which is equivalent to φ(a) ∧ (ρ1(a, b) ∧ ρ2(b, v))
since conjunction is associative.

3. Introducting an existential quantifier on the right conjunct gives φ(a)∧ (∃v′′ : ρ1(a, v′′)∧ρ2(v′′, v)). But the right conjunct
defines ρ1 ◦ ρ2(a, v), and hence we have φ(a) ∧ (ρ1 ◦ ρ2(a, v)).

4. Introducing an existential quantifier again gives ∃v′ : φ(v′) ∧ (ρ1 ◦ ρ2(v′, v)) which is equivalent to post(φ, ρ1 ◦ ρ2).



Homework 6

Question 1 Compute interpolants for:

a) x ≤ 5, y ≤ x and y ≥ 10 = y ≤ a where a ∈ {5, 6, 7, 8, 9}

b) x ≤ 5 and x ≥ y, y ≥ 10 = x ≤ a where a ∈ {5, 6, 7, 8, 9}

c) x+ 1 ≤ z and x ≥ y, y ≥ z = x ≤ z

Question 2 Prove that our interpolation algorithm respects the condition imposed on the variables that occur in the computed
interpolant.

Our interpolation algorithm is given below:

∃i ∃i0
∃λ ∃µ :

λ ≥ 0 ∧ µ ≥ 0 ∧(
λ µ

)(A
B

)
= 0 ∧ (conjunct1)(

λ µ
)(a

b

)
≤ −1 ∧ (conjunct2)

i = λA ∧ (conjunct3)

i0 = λa .

(1)

Let φA and φB be the formuals that we want to compute an interpolant for, and whose coefficient matrices are give as A and B
after rewriting all expressions φA and φB as inequalities over ≤. Let m be the number of inequalities in φA, n be the number
of inequalities in φB , and k be the number of variables that appear either in φA or φB (or both). A has m rows each for each
inequality in φA. B has n rows each for each inequality in φB . Both A and B are of k columns where each column contains
array of values for each variable (one value per inequality).

What we need to show here is that if jth column of A is 0 (the jth variable is not in A) or jth column of B is 0 (the jth

variable is not in B), then the jth column of an interpolant i should be 0. i.e. an interpolant is defined only over the variables
in both A and B.

From the assumptions on the number of inequalities in φA and φB , the total number of variables in φA and φB , and the
conjuncts in our interpolatione algorithm abov, we conclude:

• λ is a row-matrix of m columns.

• µ is a row-matrix of n columns.

•

(
λ µ

)(A
B

)
= λA+ µB = 0 (2)

If the jth column of A is 0, then the jth column of any interpolant i should be 0 by the conjunct (3) of equation (1).

If the jth column of B is 0, then the jth column of µB is 0. From equation (2), then it follows that the jth column of λA is
0 since λA+ µB = 0. Like the first case, jth column of any interpolant i should be 0 by the conjunct (3) of equation (1).

Question 4 Represent inference rules describing summarization as entailments.
The inference rules describing summarization are:

1.
(g, lmain) |= init(VG, Vmain)

((g, lmain), (g, lmain)) ∈ summmain

2.
((g, lp), (g′, l′p)) ∈ summp ((g′, l′p), (g′′, l′′p )) |= stepp(VG, Vp, V

′
G, V

′
p)

((g, lp), (g′′, l′′p )) ∈ summp



3.
((g, lp), (g′, l′p)) ∈ summp ((g′, l′p, lq)) |= callp,q(VG, Vp, Vq)

((g′, lq), (g′, lq)) ∈ summq

4.
((g, lp), (g′, l′p)) ∈ summp ((g′, l′p, lq)) |= callp,q(VG, Vp, Vq)

((g′, lq), (g′′, l′q)) ∈ summq (g′′, l′q, q
′′′) |= retq(VG, Vq, V

′
G) (l′p, l

′′
p ) |= locp(Vp, V

′
p)

((g, lp), (g′′′, l′′p )) ∈ summp

Representation of these inference rules as entailments is given below:

1.
init(VG, Vmain) |= summmain((VG, Vmain), (VG, Vmain))

2.
summp((VG, Vp), (V ′G, V

′
p)) ∧ stepp((V ′G, V

′
p), (V ′′G , V

′′
p )) |= summp((VG, Vp), (V ′′G , V

′′
p ))

3.
summp((VG, Vp), (V ′G, V

′
p)) ∧ callp,q((V ′G, V

′
p , Vq)) |= summq((V ′G, Vq), (V ′G, Vq))

4.
summp((VG, Vp), (V ′G, V

′
p)) ∧ callp,q((V ′G, V

′
p , Vq)) ∧ summq((V ′G, Vq), (V ′′G , V

′
q )) ∧

retq(V ′′G , V
′
q , V

′′′
G ) ∧ locp(V ′p , V

′′
p ) |= summp((VG, Vp), (V ′′′G , V ′′p ))



Homework 7

Question 1 For the program producer-consumer with semaphores, prove the stability of the inductive invariant given in class
under transitions PW → PM and CI → CL.

The given inductive invariant is:(
0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ ∀k < out : B[k] = f(g(A[k]))

)
∧ C1

((pc1 ≤ PM ∨ pc1 ≥ PL) ∧ (pc2 ≤ CA ∨ pc2 ≥ CL) ∧ (full = in− out))∨
((pc1 = PI) ∧ (CR ≤ pc2 ≤ CI) ∧ (full = in− out))∨

((pc1 ≤ PM ∨ pc1 ≥ PL) ∧ (CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1))∨
((pc1 = PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CL) ∧ (full = in− out+ 1))

 ∧ C2


((pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N))∨
((pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (CR ≤ pc2 ≤ CM) ∧ (empty + full = N − 1))∨

((PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1))∨
((PW ≤ pc1 ≤ PM) ∧ (CR ≤ pc2 ≤ CM) ∧ (empty + full = N − 2))∨

 ∧ C3


(pc1 = PS ∧ in = 0)∨

(pc1 = PR ∧ in < M)∨
(PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]))∨

(PM ≤ pc1 ≤ PI ∧ in < M ∧ buf [in mod N ] = g(A[in]))∨
PL ≤ pc1 ≤ PF

 ∧ C4



(pc2 = CS ∧ out = 0 ∧ ∀k ∈ [out, in) : buf [k mod N ] = g(A[k]))∨
(CA ≤ pc2 ≤ CR ∧ out < M ∧ ∀k ∈ [out, in) : buf [k mod N ] = g(A[k]))∨

(pc2 = CM ∧ out < M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ y = g(A[out]))∨
(pc2 = CW ∧ out < M ∧ (∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧ y = g(A[out]))∨

(pc2 = CI ∧ out < M ∧ (∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])))∨
(pc2 = CL ∧ out ≤M ∧ ∀k ∈ [out, in) : buf [k mod N ] = g(A[k]))∨

(pc2 = CF ∧ out = M)


C5

To make application of post straight forward later when checking stability of the invariant, assume that the invariant which
was given as: (

D11

)
∧ C1(

D21 ∨D22 ∨D23 ∨D24

)
∧ C2(

D31 ∨D32 ∨D33 ∨D34

)
∧ C3(

D41 ∨D42 ∨D43 ∨D44 ∨D45

)
∧ C4(

D51 ∨D52 ∨D53 ∨D54 ∨D55 ∨D56 ∨D57

)
C5

is rewritten as: (
D11 ∧D21 ∧D31 ∧D41 ∧D51

)
∨(

D11 ∧D21 ∧D31 ∧D41 ∧D52

)
∨
. . .(

D11 ∧D22 ∧D31 ∧D41 ∧D51

)
∨(

D11 ∧D22 ∧D31 ∧D41 ∧D52

)
∨
. . .(

D11 ∧D24 ∧D34 ∧D45 ∧D57

)
by distributing conjunctions over disjunctions, where each Dij represents the jth disjunct of the ith conjunct in the given
invariant. Since there is one disjunct in C1, four disjuncts in C2, four disjuncts in C3, five disjuncts in C4 and seven disjuncts
in C5, the re-written invariant will be a big disjunction of 1 × 4 × 4 × 5 × 7 = 560 disjuncts (where each disjunct in itself is a
conjunction).

We check stability by applying post on each of the disjuncts and checking if the resulting state is already in the invariant or
not. But we know that post will be applicable on the states that satisfy the condition set by the transition. Therefore, during
checking stability of the invariant with respect to a given transition, we must first filter those states post will be applicable.



1. PW → PM
The transition PW → PM can be represented as ρ(v, v′) = (pc1 = PW ∧ pc′1 = PM ∧ buf ′ = buf [in mod N 7→ x] ∧ x′ =
x ∧ y′ = y ∧ full′ = full ∧ empty′ = empty ∧ pc′2 = pc2 ∧ in′ = in ∧ out′ = out).
post will not be applicable on disjuncts which contain D22, D24, D31, D32, D41, D42, D44 and D45 since pc1 6= PW in
such disjuncts reducing the candidates to from 560 to 28. In addition, some disjuncts are simply unsatisfiability together
which further reduces the number of candidates. For example, although D21 and D34 satisfy pc1 = PW , there is no value
for pc2 that satisfies D21 ∧D34 which makes post inapplicable over disjuncts that contain both D21 and D34. This leaves
us with only 8 disjuncts that post is applicable to ρ(v, v′), which are given below:(

D11 ∧D21 ∧D33 ∧D43 ∧D51

)
∨(

D11 ∧D21 ∧D33 ∧D43 ∧D52

)
∨(

D11 ∧D21 ∧D33 ∧D43 ∧D56

)
∨(

D11 ∧D21 ∧D33 ∧D43 ∧D57

)
∨(

D11 ∧D23 ∧D33 ∧D43 ∧D54

)
∨(

D11 ∧D23 ∧D33 ∧D43 ∧D55

)
∨(

D11 ∧D23 ∧D34 ∧D43 ∧D52

)
∨(

D11 ∧D23 ∧D34 ∧D43 ∧D53

)
Let us now apply post on each of these disjuncts and check if the resulting state is already in the invariant or not.

(a) post(D11 ∧D21 ∧D33 ∧D43 ∧D51, ρ)

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(pc2 ≤ CA ∨ pc2 ≥ CL) ∧ (full = in− out) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CS ∧ out = 0 ∧ ∀k ∈ [out, in) : buf [k mod N ] = g(A[k]), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CS∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out = 0∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CS∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out = 0∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ buf [in mod N ] = x)
|= D11 ∧D21 ∧D33 ∧D44 ∧D51

(b) post(D11 ∧D21 ∧D33 ∧D43 ∧D52, ρ)

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(pc2 ≤ CA ∨ pc2 ≥ CL) ∧ (full = in− out) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ CA ≤ pc2 ≤ CR ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CA∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CA∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ buf [in mod N ] = x)
|= D11 ∧D21 ∧D33 ∧D44 ∧D52



(c) post(D11 ∧D21 ∧D33 ∧D43 ∧D56, ρ)

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(pc2 ≤ CA ∨ pc2 ≥ CL) ∧ (full = in− out) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CL ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ buf [in mod N ] = x)
|= D11 ∧D21 ∧D33 ∧D44 ∧D56

(d) post(D11 ∧D21 ∧D33 ∧D43 ∧D57, ρ)

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(pc2 ≤ CA ∨ pc2 ≥ CL) ∧ (full = in− out) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CF ∧ out = M,ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CF∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out = M), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CF∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out = M ∧ buf [in mod N ] = x)
|= D11 ∧D21 ∧D33 ∧D44 ∧D57

To avoid over-writing of some buffer content during the transition, in− out < N should be satisfied. This is justified
for the above four cases since from full = in− out and full + empty = N − 1, we get in− out = N − 1− empty.

(e) post(D11 ∧D23 ∧D33 ∧D43 ∧D54, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CW ∧ out < M ∧ (∀k ∈ (out, in) : buf [k mod N ] = g(A[k]))∧
y = g(A[out]), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CW∧
(full = in− out− 1) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧ y = g(A[out]), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CW∧
(full = in− out− 1) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧ y = g(A[out]) ∧ buf [in mod N ] = x)
|= D11 ∧D23 ∧D33 ∧D44 ∧D54

(f) post(D11 ∧D23 ∧D33 ∧D43 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CI ∧ out < M ∧ (∀k ∈ (out, in) : buf [k mod N ] = g(A[k]))∧
B[out] = f(g(A[out])), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M ∧ (∀k ∈ (out, in) :
buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])) ∧ buf [in mod N ] = x)
|= D11 ∧D23 ∧D33 ∧D44 ∧D55

To avoid over-writing of some buffer content during the transition, in − (out + 1) < N should be satisfied. This is
justified for the above two cases since from full = in − out − 1 and full + empty = N − 1, we get in − out − 1 =
N − 1− empty.



(g) post(D11 ∧D23 ∧D34 ∧D43 ∧D52, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (PW ≤ pc1 ≤ PM) ∧ (CR ≤ pc2 ≤ CM) ∧ (empty + full = N − 2)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ CA ≤ pc2 ≤ CR ∧ out < M∧
∀k ∈ [out, in) : buf [k mod N ] = g(A[k]), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CR∧
(full = in− out− 1) ∧ (empty + full = N − 2) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CR∧
(full = in− out− 1) ∧ (empty + full = N − 2) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ buf [in mod N ] = x)
|= D11 ∧D23 ∧D34 ∧D44 ∧D52

(h) post(D11 ∧D23 ∧D34 ∧D43 ∧D53, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (PW ≤ pc1 ≤ PM) ∧ (CR ≤ pc2 ≤ CM) ∧ (empty + full = N − 2)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CM ∧ out < M∧
∀k ∈ [out, in) : buf [k mod N ] = g(A[k]) ∧ y = g(A[out]), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CM∧
(full = in− out− 1) ∧ (empty + full = N − 2) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ y = g(A[out]), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CM∧
(full = in− out− 1) ∧ (empty + full = N − 2) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧ y = g(A[out]) ∧ buf [in mod N ] = x)
|= D11 ∧D23 ∧D34 ∧D44 ∧D53

To avoid over-writing of some buffer content during the transition, in− out < N should be satisfied. This is justified
for the above two cases since from full = in− out− 1 and full+ empty = N − 2, we get in− out = N − 1− empty.

Therefore, we can say that the invariant is stable under the transition PW → PM since applying the transition on the
invariant results only in states that are already in the invariant.

2. CI → CL
The transition CI → CL can be represented as ρ(v, v′) = (pc2 = CI ∧ pc′2 = CL∧ out′ = out+ 1∧x′ = x∧ y′ = y∧ full′ =
full ∧ empty′ = empty ∧ pc′1 = pc1 ∧ in′ = in ∧ buf ′ = buf).
Like the case for the first question, we identify the applicable disjuncts. post will not be applicable on disjuncts which
contain D21, D24, D32, D34, D51, D52, D53, D54, D56 and D57 since pc2 6= CI in such disjuncts reducing the candidates to
from 448 to 20. In addition, some disjuncts are simply unsatisfiability together. For example, although D22 and D33 satisfy
pc2 = CI, there is no value for pc1 that satisfies D22 ∧D33 which makes post inapplicable over disjuncts that contain both
D22 and D33. This leaves us with only 7 disjuncts that post is applicable with respect to ρ(v, v′), which are given below:(

D11 ∧D22 ∧D31 ∧D44 ∧D55

)
∨(

D11 ∧D23 ∧D31 ∧D41 ∧D55

)
∨(

D11 ∧D23 ∧D31 ∧D42 ∧D55

)
∨(

D11 ∧D23 ∧D31 ∧D43 ∧D55

)
∨(

D11 ∧D23 ∧D31 ∧D45 ∧D55

)
∨(

D11 ∧D23 ∧D33 ∧D43 ∧D55

)
∨(

D11 ∧D23 ∧D33 ∧D44 ∧D55

)
Let us now apply post on each of these disjuncts and check if the resulting state is already in the invariant or not.



(a) post(D11 ∧D22 ∧D31 ∧D44 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 = PI) ∧ (CR ≤ pc2 ≤ CI)∧
(full = in− out) ∧ (pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N) ∧ PM ≤ pc1 ≤ PI∧
in < M ∧ buf [in mod N ] = g(A[in]) ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PI ∧ pc2 = CI∧
full = in− out ∧ empty + full = N ∧ in < M ∧ buf [in mod N ] = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PI ∧ pc2 = CL ∧ full = in− out+ 1∧
empty + full = N ∧ in < M ∧ buf [in mod N ] = g(A[in]) ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k]))∧
B[out− 1] = f(g(A[out− 1])))

|= D11 ∧D24 ∧D31 ∧D44 ∧D56

(b) post(D11 ∧D23 ∧D31 ∧D41 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW )∧
(empty + full = N) ∧ pc1 = PS ∧ in = 0 ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PS ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N) ∧ in = 0 ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out− 1 : B[k] = f(g(A[k]))) ∧ pc1 = PS ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ in = 0 ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧B[out− 1] = f(g(A[out− 1])))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PS ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ in = 0 ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])))

|= D11 ∧D21 ∧D31 ∧D41 ∧D56

(c) post(D11 ∧D23 ∧D31 ∧D42 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW )∧
(empty + full = N) ∧ pc1 = PR ∧ in < M ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PR ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N) ∧ in < M ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out− 1 : B[k] = f(g(A[k]))) ∧ pc1 = PR ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ in < M ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧B[out− 1] = f(g(A[out− 1])))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PR ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ in < M ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])))

|= D11 ∧D21 ∧D31 ∧D42 ∧D56

(d) post(D11 ∧D23 ∧D31 ∧D43 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW )∧
(empty + full = N) ∧ PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PA ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out− 1 : B[k] = f(g(A[k]))) ∧ pc1 = PA ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ in < M ∧ x = g(A[in]) ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧B[out− 1] = f(g(A[out− 1])))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PA ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ in < M ∧ x = g(A[in]) ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])))

|= D11 ∧D21 ∧D31 ∧D43 ∧D56



(e) post(D11 ∧D23 ∧D31 ∧D45 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (pc1 ≤ PA ∨ pc1 ≥ PI) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW )∧
(empty + full = N) ∧ PL ≤ pc1 ≤ PF ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ PL ≤ pc1 ≤ PF ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out]))), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out− 1 : B[k] = f(g(A[k]))) ∧ PL ≤ pc1 ≤ PF ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧B[out− 1] = f(g(A[out− 1])))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ PL ≤ pc1 ≤ PF ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N) ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])))

|= D11 ∧D21 ∧D31 ∧D45 ∧D56

(f) post(D11 ∧D23 ∧D33 ∧D43 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PA ≤ pc1 ≤ PW ∧ in < M ∧ x = g(A[in]) ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out− 1 : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧B[out− 1] = f(g(A[out− 1])))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PW ∧ pc2 = CL ∧ full = in− out∧
(empty + full = N − 1) ∧ in < M ∧ x = g(A[in]) ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])))

|= D11 ∧D21 ∧D33 ∧D43 ∧D56

(g) post(D11 ∧D23 ∧D33 ∧D44 ∧D55, ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ (pc1 ≤ PM ∨ pc1 ≥ PL)∧
(CR ≤ pc2 ≤ CI) ∧ (full = in− out− 1) ∧ (PW ≤ pc1 ≤ PM) ∧ (pc2 ≤ CA ∨ pc2 ≥ CW ) ∧ (empty + full = N − 1)∧
PM ≤ pc1 ≤ PI ∧ in < M ∧ buf [in mod N ] = g(A[in]) ∧ pc2 = CI ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])), ρ(v, v′))

= post(0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 0 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CI∧
(full = in− out− 1) ∧ (empty + full = N − 1) ∧ in < M ∧ buf [in mod N ] = g(A[in]) ∧ out < M∧
(∀k ∈ (out, in) : buf [k mod N ] = g(A[k])) ∧B[out] = f(g(A[out])), ρ(v, v′))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out− 1 : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CL∧
(full = in− out) ∧ (empty + full = N − 1) ∧ in < M ∧ buf [in mod N ] = g(A[in]) ∧ out ≤M∧
(∀k ∈ [out, in) : buf [k mod N ] = g(A[k])) ∧B[out− 1] = f(g(A[out− 1])))

= (0 ≤ empty ∧ 0 ≤ full ∧ 0 ≤ in ∧ 1 ≤ out ∧ (∀k < out : B[k] = f(g(A[k]))) ∧ pc1 = PM ∧ pc2 = CL ∧ full = in− out∧
(empty + full = N − 1) ∧ in < M ∧ buf [in mod N ] = g(A[in]) ∧ out ≤M ∧ (∀k ∈ [out, in) : buf [k mod N ] = g(A[k])))

|= D11 ∧D21 ∧D33 ∧D44 ∧D56

Therefore, we can say that the invariant is stable under the transition CI → CL since applying the transition on the
invariant results only in states that are already in the invariant.

Question 2 Consider the Dijkstra’s two-threaded algorithm. Prove or refute that the inductive invariant given in class is the
strongest one, i.e. that every invariant that implies the given one is already equivalent to the given one.

The given inductive invariant is:(
(pc1 ∈ {S,L2} ∧ ¬req1)∨

(pc1 ∈ {L1, C} ∧ req1)

)
∧
(

(pc2 ∈ {S,L2} ∧ ¬req2)∨
(pc2 ∈ {L1, C} ∧ req2)

)
∧ ¬(pc1 = pc2 = C) (3)

One way of proving (or refuting) is to compute the strongest inductive invariant and compare it with the given inductive invariant.
The computed strongest invariant is:



(pc1 = S ∧ ¬req1 ∧ pc2 = S ∧ ¬req2) ∨ (pc1 = L1 ∧ req1 ∧ pc2 = S ∧ ¬req2) ∨ (pc1 = S ∧ ¬req1 ∧ pc2 = L1 ∧ req2) ∨
(pc1 = L1 ∧ req1 ∧ pc2 = L1 ∧ req2) ∨ (pc1 = L1 ∧ req1 ∧ pc2 = C ∧ req2) ∨ (pc1 = L1 ∧ req1 ∧ pc2 = L2 ∧ ¬req2) ∨
(pc1 = S ∧ ¬req1 ∧ pc2 = L2 ∧ ¬req2) ∨ (pc1 = C ∧ req1 ∧ pc2 = L2 ∧ ¬req2) ∨ (pc1 = C ∧ req1 ∧ pc2 = L1 ∧ req2) ∨
(pc1 = C ∧ req1 ∧ pc2 = S ∧ ¬req2) ∨ (pc1 = S ∧ ¬req1 ∧ pc2 = C ∧ req2) ∨ (pc1 = L2 ∧ ¬req1 ∧ pc2 = L1 ∧ req2) ∨
(pc1 = L2 ∧ ¬req1 ∧ pc2 = C ∧ req2) ∨ (pc1 = L2 ∧ ¬req1 ∧ pc2 = S ∧ ¬req2)

The given invariant contians the state satisfying (pc1 = L2 ∧ ¬req1 ∧ pc2 = L2 ∧ ¬req2) which is not in the strongest inductive
invariant. Therefore, the given inductive invariant is not the strongest one.

Question 3 The following mutual exclusion algorithm for 2 threads is suggested:

initially turn∈ {1, 2} ∧Q1 = Q2 = false
// Thread 1: // Thread 2:

while(true) { while(true) {
// noncritical section // noncritical section

A: Q1:=true A: Q2:=true

B: turn:=1 B: turn:=2

C: 〈await ¬Q2∨ turn=2〉 C: 〈await ¬Q1∨ turn=1〉
// critical section // critical section

D: Q1:=false D: Q2:=false

// noncritical section // noncritical section

} }

Prove or refute the mutual exclusion property, which here says that in any state reachable from the initial ones the two threads
are not simultaneously at the critical locations D. You may assume that the threads start at locations A and the transitions
between each pair of labels is atomic.
One way to prove (or refute) mutual exclusiveness is to compute the strongest inductive invariant by staring from the inital state
and applying the possible transitions from both threads until all computed states are already reached.

The strongest inductive invariant is:
I = (PC1 = A ∧ PC2 = A ∧ ¬Q1 ∧ ¬Q2) ∨ (PC1 = B ∧ PC2 = A ∧Q1 ∧ ¬Q2)∨

(PC1 = A ∧ PC2 = B ∧ ¬Q1 ∧Q2) ∨ (PC1 = C ∧ PC2 = A ∧Q1 ∧ ¬Q2 ∧ turn = 1)∨
(PC1 = B ∧ PC2 = B ∧Q1 ∧Q2) ∨ (PC1 = A ∧ PC2 = C ∧ ¬Q1 ∧Q2 ∧ turn = 2)∨
(PC1 = D ∧ PC2 = A ∧Q1 ∧ ¬Q2 ∧ turn = 1) ∨ (PC1 = C ∧ PC2 = B ∧Q1 ∧Q2 ∧ turn = 1)∨
(PC1 = B ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 2) ∨ (PC1 = A ∧ PC2 = D ∧ ¬Q1 ∧Q2 ∧ turn = 2)∨
(PC1 = D ∧ PC2 = B ∧Q1 ∧Q2 ∧ turn = 1) ∨ (PC1 = C ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 2)∨
(PC1 = C ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 1) ∨ (PC1 = B ∧ PC2 = D ∧Q1 ∧Q2 ∧ turn = 2)∨
(PC1 = D ∧ PC2 = C ∧Q1 ∧Q2 ∧ turn = 2) ∨ (PC1 = C ∧ PC2 = D ∧Q1 ∧Q2 ∧ turn = 1)∨

and, we can see that there is no reachable state that satisfies (PC1 = D ∧ PC2 = D).



Homework 8

Question 1 In class a formula I for the Szymanski’s mutual exclusion protocol was given as:

Let
Lj = {t ∈ Tid | pct = lj}forallj : 1 ≤ j ≤ 12,

Lj1,j2,...,jm = Lj1 ∪ Lj2 ∪ ... ∪ Ljm =
m⋃
i=1

Lji,

Fk = {t ∈ Tid | flag[t] = k}forallk : 0 ≤ k ≤ 4,

Fk1,k2,...,km = Fk1 ∪ Fk2 ∪ ... ∪ Fkm =
m⋃
i=1

Fki,

IF =

(
F0 = L1,2 ∧ F1 = L3,4 ∧ F2 ⊆ L7,8 ∧ F3 = L5,6,8∧

F4 = L9,...,12 ∧ Tid ⊆ F0,...,4

)
,

A0 =
(
L8,...,12 6= ∅ → L4 = ∅

)
,

A1 =
(
L8,...,12 6= ∅ → L8,...,12 ∩ F3,4 6= ∅

)
,

A2 =
(
∀t ∈ L10,11,12, : ∀k < t : k 6∈ L5,...,12

)
,

A3 =
(
L12 6= ∅ → L5,...,12 ⊆ F4

)
,

and
I = IF ∧A0 ∧A1 ∧A2 ∧A3.

1. Prove that I is stable under each transition at locations l5 till l12 of each thread.
(*************** to be added soon *********************)

2. Show that I implies the mutual exclusion property, namely, that ∀i, j ∈ Tid : (li = 10 = lj)→ (i = j).
We can show the property by assuming the contrary and reaching a contradiction.

Let us assume ∃i, j ∈ Tid : (li = 10 = lj) ∧ (i 6= j).
Case i < j: by A2 we get i 6∈ L5,...,12 which is a contradiction to li = 10.
Case j < i: similarly, by A2 we get j 6∈ L5,...,12 which is a contradiction to lj = 10.

3. Assume that the transition at location l11 is replaced by a no-operation (which changes just the program counter of the
executing thread, while the remaining variables retain their values). Is the mutual exclusion property still satisfied?

Yes, the mutual exclusion property is still satisfied. The conjunct A3 does not hold anymore, and the new inductive
invariant will be I = IF ∧A0 ∧A1 ∧A2, which still contains A2 that ensures mutual exclusion.
However, since some thread may fail to close the door, the next batch of threads may come in and access the critical section
even before that thread. This may happen infinitely often so that this thread may never actually get access the critical
section. So, the algorithm will not be fair anymore.

Question 2 (An optional task with an increased difficulty level.) Let (L,≤) be a complete lattice (i.e. a partial order in which
for every set A ⊆ L, the least upper bound supA and the greatest lower bound inf A exist). Let f : L→ L.

1. If f is monotone, then the least fixpoint of f , written lfp(f), exists and is equal to inf{x ∈ L|f(x) = x} = inf{x ∈ L|f(x) ≤
x}.
There are three proofs to be done here:

• show that lfp(f) exists (let’s call it P1),

• show that lfp(f) = inf{x|f(x) = x} (let’s call it P2), and

• show that lfp(f) = inf{x|f(x) ≤ x} (let’s call it P3).

(a) Let l = inf{x|f(x) ≤ x}, i.e. l is the greatest lower bound of {x|f(x) ≤ x}.
(b) We get f(l) ≤ l.
(c) ∀ : y f(y) ≤ y → y ≥ l.
(d) since f is monotone, we have f(f(l)) ≤ f(l).

(e) By (c), we have f(l) ≥ l.
(f) f(l) = l, i.e. l is a fixpoint, from (b) and (e) proving P1.

(g) l is the least fixpoint by (a) and (f) proving P3.

(h) l ∈ {x|f(x) = x} by (f).

(i) l = inf{x|f(x) = x} by (a) since {x|f(x) = x} ⊆ {x|f(x) ≤ x} proving P2.



2. For all nonempty chains C ⊆ L, if we have sup f(C) = f(supC), then lfp(f) = sup{f i(inf L)|i ∈ N0}.
Let f(B) = B be any fixpoint, we first show that sup{f i(inf L)|i ∈ N0} ≤ B, and then that it is a fixpoint. We will prove
by induction that ∀i ∈ N0 : f i(inf L) ≤ B.

(a) base case: i = 0. f i(inf L) = f0(inf L) = inf L ≤ B.

(b) induction step: we assume f i−1(inf L) ≤ B, and then we try to show f i(inf L) ≤ B.

(c) f i(inf L) = f(f i−1(inf L)).

(d) f(f i−1(inf L)) ≤ sup{f(f i−1(inf L)), f(B)}.
(e) f(f i−1(inf L)) ≤ f(sup{f i−1(inf L), B}) by the assumption for non-empty chains.

(f) f(f i−1(inf L)) ≤ f(B) by inductive hypothesis.

(g) f i(inf L) ≤ B from f(B) = B, and this shows sup{f i(inf L)|i ∈ N0} ≤ lfp(f).

(h) f(sup{f i(inf L)|i ∈ N0}) = sup{f i(inf L)|i ∈ N+}.
(i) f(sup{f i(inf L)|i ∈ N0}) = sup{{f i(inf L)|i ∈ N+} ∪ {inf L}} = sup{f i(inf L)|i ∈ N0} since adding inf L to the set

will not affect the value of sup for the set; i.e. sup{f i(inf L)|i ∈ N0} is a fixpoint.

(j) By (g) and (i), lfp(f) = sup{f i(inf L)|i ∈ N0}.



Homework 9

1. Infer the type in the empty typing environment:

let fun f x y =

if x $>$ y then true

else false

in f 0

end

T1 := {f : int -> int -> bool, x: = int, y := int}

T1 |- > : int -> int -> bool

T1 |- x : int

T1 |- y : int

------------------- T1 |- true : bool

T1 |- x > y : bool T1 |- false : bool

--------------------------------------------

{f : int -> int -> bool, x: = int, y := int} {f : int -> int -> bool} |- f : int -> int -> bool

|- if x > y then true else false : bool {f : int -> int -> bool} |- 0 : int

------------------------------------------ -------------------------------------------------

{} |> fun f x y = {f : int -> int -> bool} |- f 0: int -> bool

if x > y then true else false :

{f : int -> int -> bool}

----------------------------------------------------------------------------

{} |- let fun f x y = if x > y then true else false in f 0 end : int -> bool

2. Which typing environment is obtained by typing the following declarations in the empty typing environment:

1. val t = 3{t : int}

2. fun fib n = if n < 3 then 1 else fib (n-1) + fib(n-2){fib : int→ int}

3. fun square r = let fun exp y x = if y = 0 then 1 else if y < 0 then 0 else x * (exp (y-1) x) in exp 2 r end{square : int→ int}

3. Which sequence of value environments is obtained by evaluating the following program?
fun f x = if x then 1 else 0;
val x = 5*7;
fun g z = f (z < x) < x;
val x = g 5;
val k = let fun h x = x * x in h end;

Note: In the script the type does not need to be specified for functions, so it is left out here as well (unlike during the exercises
and the lecture).

[f := (fun f x = if x then 1 else 0, [])]

[f := (fun f x = if x then 1 else 0, []), x := 35]

[f := (fun f x = if x then 1 else 0, []), x := 35,
g:= (fun g z = f (z < x) < x, [x := 35 , f := (fun f x = if x then 1 else 0, [])])]

[f:= (fun f x = if x then 1 else 0, []),
g:= (fun g z = f (z < x) < x, [x := 35 , f := (fun f x = if x then 1 else 0, [])]), x := true]

[f:= (fun f x = if x then 1 else 0, []),
g:= (fun g z = f (z < x) < x, [x := 35 , f := (fun f x = if x then 1 else 0, [])]), x := true,
k:= (fun h x = x * x, [])]
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5. Formalize as a refinement type: the value of x is a negative integer that is greater then the sum of values of y and z.
x : {v : int|v < 0 ∧ v > y + z}

6. Formalize as a refinement type: the value of f is a function that takes as input a positive integer and returns the doubled
value. f : (x : {v : int|v > 0} → {v : int|v = 2n})



Homework 10

Part I - Refinement types Provide refinement type derivation for the following functions (as shown on Slides 16.4 and 16.5).

1. The fibonacci sequence:

fun fib n =

if n < 3 then 1

else

let val m = fib (n - 1) in

m + fib(n - 2)

R1 := {fib : (n : r1 -> r2, n : r1}

R2 := R1, n >= 3, m : r3

r1 = {v : int | P1(v,..)}

r2 = {v : int | P2(v,..)}

r3 = r2[n-1/n]

r4 = r2[n-2/n]

formula(R1, n >= 3) |= P1[n-1/v] formula(R2) |= P1[n-2/v]

-------------------------------- -----------------------

R1, n >= 3 |- n - 1 : r1 R2 |- n - 2 : r1

R1, n >= 3 |- fib : (n : r1 -> r2) R2 |- fib : (n : r1 -> r2)

---------------------------------- -------------------------------------

R1, n >= 3 |- fib (n - 1) : r3 R2|- m : r3 R2|- fib (n - 2) : r4

-------------------------------------- -------------------------------------

formula(R1,n < 3) R1, n >= 3 |> val m = fib (n - 1) : R2 R2 |- m + fib (n - 2) : r2

|= P2[1/v]

------------------- ------------------------------------------------------------------

R1, n < 3 |- 1 : r2 R1, n >= 3 |- let val m = fib (n - 1) in m + fib(n - 2) end : r2

-----------------------------------------------------

R1 |- if n < 3 then 1 else let val m = fib (n - 1) in m + fib(n - 2) end : r2

-----------------------------------------------------------------------------

{} |> fib : (n : r1 -> r2) : R1

possible solutions: P2 = (v > 0), P2 = true

2. The maximum of two numbers:

fun max x y =

if x > y then x

else y

R1 := {max : (x : r1 -> y: r2 -> r3, x : r1, y : r2}

r3 = {v : int | P3(v,..)}

formula(R1, x > y) |= P3[x/v] formula(R1, x <= y) = P3[y/v]

----------------------------- -----------------------------

R1, x > y |- x : r3 R1, x <= y |- y : r3

-----------------------------------------------------

R1 |- if x > y then x else y : r3

----------------------------------------------------------------------------

{} |> max x y : (x : r1 -> y : r2 -> r3) : R1

possible solutions: P3 = (v > y \or x <= v), P3 = true



3. Factorial of an integer n:

fun fact n =

if n < 1 then 1

else

let val m = fact (n - 1) in

n * m

Part II - LTL

A. Let AP = {green, yellow, red} and σ = ({green}{green}{green}{yellow}{red}{red}{red}{yellow, red})ω.
Does σ satisfy the following properties?

1. © green ∨ yellow
Yes.

2. ¬green U red
No.

3. ¬(green U red)
Yes.

B. Let AP = {green, yellow, red}. Write the following properties as LTL formulas (derived operators are allowed).

1. Red and yellow occur together infinitely often.

�♦(red ∧ yellow).

2. From some time point onward red and green never occur together.
♦�(¬(red ∧ green)).

3. Whenever green turns on, green continues for at least two consecutive time units.

�(¬green ∧© green→©© green ∧©©© green).

C. Consider a program P with State= {s0, s1, s2}, init= {s0}, transitions s1 → s0 → s2 → s1. Let AP = {a, b}. Let a label
just s1 and b label just s2. Do the following formulas hold for P?

1. ♦ a ∧ ♦ b.
Yes.

2. ♦(a ∧ b).
No.

3. ♦ a U�¬(a ∧ b).
Yes.

4. �♦ b.
Yes.

D. Let AP be a set of atomic propositions and ϕ, ψ be LTL formulas over AP . Show the following properties about distribu-
tivity, negation propagation, and expansion of temporal connectives:

1. ©(ϕ ∧ ψ) ≡ ©ϕ ∧©ψ.
We have to show that σ |=©(ϕ ∧ ψ) if and only if σ |=©ϕ ∧©ψ.

”⇒ ” :

(a) assume σ |=©(ϕ ∧ ψ). We have σ[0..] |=©(ϕ ∧ ψ).

(b) σ[1..] |= ϕ ∧ ψ by applying the definition of ©.

(c) σ[1..] |= ϕ and σ[1..] |= ψ by eliminating ∧.

(d) σ |=©ϕ and σ |=©ψ by reduction to © using its definition.

(e) σ |=©ϕ ∧©ψ by introducing ∧.

”⇐ ” :

(a) Assume σ |=©ϕ ∧©ψ.



(b) We get σ |=©ϕ and σ |=©ψ by eliminating ∧.

(c) By applying definition of ©, we get σ[1..] |= ϕ and σ[1..] |= ψ.

(d) We then get σ[1..] |= ϕ ∧ ψ by introducing ∧.

(e) σ |=©(ϕ ∧ ψ) by reducing to © using its definition.

2. ©(ϕ U ψ) ≡ ©ϕ U©ψ.

3. ¬�ϕ ≡ ♦¬ϕ.

4. ¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ.

We have to show that ¬(ϕ U ψ) if and only if (¬ϕ R ¬ψ).

”⇒ ” :
ϕ U ψ is defined as ∃j ≥ 0(σ[j..] |= ψ ∧ ∀i < jσ[i..] |= ϕ), and its negation ¬(ϕ U ψ) is ¬(∃j≥0(σ[j..] |= ψ ∧ ∀i<jσ[i..] |= ϕ))
which is equivalent to ∀j ≥ 0(σ[j..] |= ¬ψ ∨ ∃i < jσ[i..] |= ¬ϕ). But this defines ¬ϕ R ¬ψ.

”⇐ ” :
This is done by exactly doing the reverse of the ” ⇒ ” proof. We know that ¬ϕ R ¬ψ ≡ ¬¬(¬ϕ R ¬ψ). By applying
the double negation on the definition of ¬ϕ R ¬ψ, we get ¬¬(∀j≥0(σ[j..] |= ¬ψ ∨ ∃i<jσ[i..] |= ¬ϕ)) which is equivalent to
¬(∃j≥0(σ[j..] |= ψ ∧ ∀i<jσ[i..] |= ϕ)). But the one inside the negation defines ϕ U ψ, and hence the whole formula will be
¬(ϕ U ψ).

5. ¬(ϕW ψ) ≡ (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ).

We have to show that σ |= ¬(ϕW ψ) if and only if σ |= (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ).

”⇒ ” :
We have ♦¬ϕ∧¬ϕR¬ψ. Let j ≥ 0 be the first state that ¬ϕ holds, i.e. σ[j..] |= ¬ϕ and ∀i < j : σ[i..] |= ϕ. From ¬ϕR¬ψ,
we have �¬ψ or ¬ψ U (¬ϕ ∧ ¬ψ).
Case �¬ψ: then, ∃j : σ[j..] |= ¬ϕ ∧ ¬ψ and ∀i < j : σ[i..] |= ϕ ∧ ¬ψ. Therefore, (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ).
Case ¬ψ U (¬ϕ ∧ ¬ψ): then, ∀i < j : σ[i..] 6|= ¬ϕ ∧ ¬ψ, and hence ∀i < j : σ[i..] |= ¬ψ and σ[j..] |= ¬ψ. Thus,
∃j : σ[j..] |= ¬ϕ ∧ ¬ψ and ∀i < j : σ[i..] |= ϕ ∧ ¬ψ. Therefore, (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ).
”⇐ ” :
From ϕ U (¬ϕ ∧ ¬ψ), we get ♦¬ϕ, and from ψ U (¬ϕ ∧ ¬ψ), we get �¬ψ ∨ ψ U (¬ϕ ∧ ¬ψ) which implies ¬ϕ R ¬ψ. ♦¬ϕ
and ¬ϕ R ¬ψ together imply ¬(�ϕ ∨ ϕ R ψ), i.e. ¬(ϕW ψ).

6. ¬(ϕ R ψ) ≡ (¬ϕ U ¬ψ).

7. ϕ U ψ ≡ ψ ∨ (ϕ ∧©(ϕ U ψ)).

We have to show that σ |= ϕ U ψ if and only if σ |= ψ ∨ (ϕ ∧©(ϕ U ψ)).

”⇒ ” :
There is j ≥ 0 such that σ[j..] |= ψ and ∀i<jσ[i..] |= ϕ.
Case j=0: then σ |= ψ, therefore σ |= ψ ∨ (ϕ ∧©(ϕ U ψ)).
Case j>0: then σ[0..] |= ϕ, therefore σ |= ϕ. Also, ∀i < j − 1 : σ[i+ 1..] |= ϕ, i.e. ∀i < j − 1 : σ[1..][i..] |= ϕ. In addition,
σ[1..][j − 1..] |= ψ. Thus, σ[1..] |= ϕ U ψ. Therfore, σ |= ϕ ∧©(ϕ U ψ) which implies that σ |= ψ ∨ (ϕ ∧©(ϕ U ψ)).

”⇐ ” :
Case σ |= ψ: then σ[0..] |= ψ and there is no i such that i < 0. Therefore, σ |= ϕ U ψ.
Case σ |= ϕ∧©(ϕUψ): then, σ[1..] |= ϕUψ. There is j ≥ 0 such that σ[1..][j..] |= ψ and ∀i < j : σ[1..][i..] |= ϕ. Therefore,
∀i < j : σ[i+ 1..] |= ϕ and σ[j + 1..] |= ψ. Since σ[0..] = σ |= ϕ, we have ∀i < j + 1 : σ[i..] |= ϕ. Thus, σ |= ϕ U ψ.

8. ϕW ψ ≡ ψ ∨ (ϕ ∧©(ϕW ψ)).

We have to show that σ |= ϕW ψ if and only if σ |= ψ ∨ (ϕ ∧©(ϕW ψ)). We use the definition ϕW ψ ≡ �ϕ ∨ ϕ U ψ.

”⇒ ” :
σ |= ϕW ψ implies σ |= �ϕ ∨ ϕ U ψ, i.e. σ |= �ϕ or σ |= ϕ U ψ.
Case σ |= �ϕ: then, σ |= ϕ and σ[1..] |= �ϕ. Therefore, σ[1..] |= ϕW ψ which is equivalent with σ |=©(ϕW ψ). Thus,
σ |= ϕ ∧©(ϕW ψ).
Case σ |= ϕUψ: then, σ |= ψ ∨ (ϕ∧©(ϕUψ)) as it was proven in (7) above. This implies σ |= ψ ∨ (ϕ∧©(�ϕ∨ϕUψ)).
Thus, σ |= ψ ∨ (ϕ ∧©(ϕW ψ)).

”⇐ ” :
By the definition of W, we have σ |= ψ∨ (ϕ∧©(�ϕ∨ϕUψ)), which can be reduced to σ |= ψ∨ (ϕ∧©(ϕUψ))∨ϕ∧©�ϕ
i.e. σ |= ψ ∨ (ϕ ∧©(ϕ U ψ)) or σ |= ϕ ∧©�ϕ. But, σ |= ψ ∨ (ϕ ∧©(ϕ U ψ)) implies σ |= ϕ U ψ, and hence σ |= ϕW ψ,
as it was proven in (7) above. For σ |= ϕ ∧ ©�ϕ, which is equivalent to σ |= �ϕ, we have σ |= �ϕ ∨ ϕ U ψ which is
equvalent with σ |= ϕW ψ.



E. Let AP = {green, yellow, red}. Convert the following formulas into positive LTL:

1. ¬((yellow U green) U red).
(¬yellow R ¬green) R ¬red.

2. ¬(greenW (red U green)).
≡ ¬(� green ∨ (green U (red U green)))
♦¬green ∧ ¬green R (¬red R ¬green).

3. ¬((yellow U green) R (red U green)).
(¬yellow R ¬green) U (¬red R ¬green).

F. (A task with an increased level of difficulty, **.) Show that weak until is ”the greatest solution of the expansion law”. More
formally, show that for all LTL formulas ϕ, ψ over a set of atomic propositions AP ,

1. words(ϕW ψ) is a fixpoint of the map λS ∈ P(N0 → P(AP )).words(ψ) ∪ {σ ∈ words(ϕ)|σ[1..] ∈ S}.
Let f(S) = words(ψ) ∪ {σ ∈ words(ϕ)|σ[1..] ∈ S}. We will show words(ϕW ψ) is a fixpoint of f ; i.e. f(words(ϕW ψ)) =
words(ϕW ψ).

” ⊆ ”
Let σ ∈ f(words(ϕW ψ)).
Case σ ∈ words(ψ): then, σ |= ψ. So, σ |= ϕ U ψ, and hence σ |= ϕW ψ. Therefore, σ ∈ words(ϕW ψ).
Case σ ∈ words(ϕ) and σ[1..] ∈ word(ϕW ψ): then, σ |= ϕ, and (σ[1..] |= �ϕ or σ[1..] |= ϕ U ψ).

• sub-case σ[1..] |= �ϕ: then, σ |= �ϕ. Therefore, σ |= ϕW ψ, i.e. σ ∈ words(ϕW ψ).

• sub-case σ[1..] |= ϕ U ψ: then, there is j ≥ 0 such that σ[1..][j..] |= ψ and ∀i < j : σ[1..][i..] |= ϕ. This results in
σ[j + 1..] |= ψ and ∀0 < i < j + 1 : σ[i..] |= ϕ. Since σ |= ϕ, we get ∀i < j + 1 : σ[i..] |= ϕ. Thus, σ |= ϕ U ψ, and
hence, σ |= ϕW ψ, i.e. σ ∈ words(ϕW ψ).

” ⊇ ”
Let σ ∈ words(ϕW ψ). Then, σ |= �ϕ or σ |= ϕ U ψ.
Case σ |= �ϕ: then, σ |= ϕ and σ[1..] |= �ϕ. Thus σ ∈ words(ϕ) and σ[1..] ∈ ϕW ψ. Therefore, σ ∈ f(ϕW ψ).
Case σ |= ϕ U ψ: then, there is j ≥ 0 such that σ[j..] |= ψ and ∀i < j : σ[i..] |= ϕ.

• sub-case j=0: then, σ |= ψ, therefore σ ∈ words(ψ) ⊆ f(words(ϕW ψ)).

• sub-case j>0: then, for k = j − 1 we have (σ[1..][k..] |= ψ and ∀i < k : σ[1..][i..] |= ϕ) which gives σ[1..] |= ϕ U ψ.
Since σ |= ϕ, we have σ ∈ {σ̂ ∈ words(ϕ)|σ̂[1..] |= ϕW ψ}. Therefore, σ ∈ f(ϕW ψ).

2. and, that it is the greatest of all such fixpoints.
Let f(S) = S. We will show that S ⊆ words(ϕWψ). Let σ ∈ S. Assume for the purpose of contradiction that σ 6|= ϕWψ,
i.e. σ |= ¬(ϕW ψ), i.e. σ |= (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ). Then, there is j ≥ 0 such that σ[j..] |= ¬ϕ ∧ ¬ψ and forall i < j we
have σ[i..] |= ϕ ∧ ¬ψ. We will show by backward induction that σ[k..] 6∈ S for all k < j.

• Case k=j: σ[j..] 6|= ψ and σ[j..] 6|= ϕ, so σ[j..] 6∈ f(S), and hence, σ[j..] 6∈ S.

• Case k<j: Assume by induction hypothesis that σ[k + 1..] 6∈ S. Notice that σ[k..] |= ¬ψ, so σ[k..] 6∈ words(ψ). In
addition, (σ[k..][1..] 6∈ S). Thus, σ[k..] 6∈ f(S) = S.

By induction, ∀k ≤ j : σ[k..] 6∈ S. In particular, σ 6∈ S.


