Homework 1

Exercise 2 Prove or give a counterexample: $((\forall y: P(y)) \vee(\forall z: Q(z))) \rightarrow(\forall x: P(x) \vee Q(x))$.
The implication holds as it is proven below:

1. Let us assume $((\forall y: P(y)) \vee(\forall z: Q(z)))$. Then we apply reasoning based on cases; i.e. we consider first the case where $((\forall y: P(y))$ holds but not $(\forall z: Q(z))$, and then the case where $(\forall z: Q(z))$ holds but not $((\forall y: P(y))$.
2. first case: From $((\forall y: P(y))$, we get $P(x)$ for any arbitrary x.
3. $P(x) \vee Q(x)$ holds for any predicate $Q(x)$ on any arbitrary x.
4. $(\forall x: P(x) \vee Q(x))$ follows by introducing \forall.
5. second case: From $((\forall z: Q(z))$, we get $Q(x)$ for any arbitrary x.
6. $P(x) \vee Q(x)$ holds for any predicate $P(x)$ on any arbitrary x.
7. $(\forall x: P(x) \vee Q(x))$ follows by introducing \forall.

Exercise 3 Prove or give a counterexample: $(\forall x: P(x) \vee Q(x)) \rightarrow((\forall y: P(y)) \vee(\forall z: Q(z)))$.
The implication does not hold. A counterexample can be the interpretation $I=\{D=\{1,2\}, P(1), Q(2)\}$.

Homework 2

Exercise 1 Prove the following equivalence: $\forall v \forall v^{\prime}: H(v) \wedge R\left(v, v^{\prime}\right) \rightarrow H\left(v^{\prime}\right)$ if and only if forall s and for all s^{\prime} it holds if $s \models H(v)$ and $\left(s, s^{\prime}\right) \models R\left(v, v^{\prime}\right)$ then $s^{\prime} \models H(v)$.

The proof depends mainly of the semantics of the satisfaction statements such as $s \models H(v)$ which states that some s is an instance of $H(v)$ or $H(s)$ holds. The equivalence is shown by proving that one follows from the other in both directions.
\Longrightarrow proof

1. Let us start by assuming $\forall v \forall v^{\prime}: H(v) \wedge R\left(v, v^{\prime}\right) \rightarrow H\left(v^{\prime}\right)$.
2. To show that $s \models H(v)$ and $\left(s, s^{\prime}\right) \models R\left(v, v^{\prime}\right) \Longrightarrow s^{\prime} \models H(v)$ for all s and s^{\prime}, we also assume $s \models H(v)$ and $\left(s, s^{\prime}\right) \models R\left(v, v^{\prime}\right)$ for arbitrary s and s^{\prime}.
3. By the semantics of $\models, H(s)$ and $R\left(s, s^{\prime}\right)$ follows from $s \models H(v)$ and $\left(s, s^{\prime}\right) \models R\left(v, v^{\prime}\right)$.
4. $H\left(s^{\prime}\right)$ follows from (1), which is equivalent to $s^{\prime} \models H(v)$.
\Leftarrow proof
5. Let us start by assuming that forall s and for all s^{\prime}, if it holds $s \models H(v)$ and $\left(s, s^{\prime}\right) \models R\left(v, v^{\prime}\right)$ then it also holds $s^{\prime} \models H(v)$.
6. Let us also assume $H(v) \wedge R\left(v, v^{\prime}\right)$ for arbitrary v and v^{\prime}.
7. From the conjunction, we have $H(v)$ which is equivalent to $v \models H(s)$ and $R\left(v, v^{\prime}\right)$ whichisequivalentto $\left(v, v^{\prime}\right) \models R\left(s, s^{\prime}\right)$.
8. We get $v^{\prime} \models H(s)$ from (1). But this is equivalent to $H\left(v^{\prime}\right)$.

Exercise 2 Prove that if a program is safe then there exists $H(v)$ (in an expressive assertion language) such that
$\forall v: \varphi_{\text {init }}(v) \rightarrow H(v) \quad: C_{1}$
$\forall v \forall v^{\prime}: H(v) \wedge R\left(v, v^{\prime}\right) \rightarrow H\left(v^{\prime}\right) \quad: C_{2}$
$\forall v: H(v) \wedge \varphi_{e r r}(v) \rightarrow \perp \quad: C_{3}$
Let $H(v) \equiv \varphi_{\text {reach }}(v)$ where $\varphi_{\text {reach }}(v)$ is the set of reachable states of the program. By the definition of reachability, $H(v)$ satisfies C_{1} and C_{2}. But since it is given that the program is safe, $\varphi_{\text {reach }}(v)$, and hence $H(v)$ satisfy C_{3}.

Homework 3

Exercise 2 Prove that upon termination of BRA, if a node n is reachable from the initial node n_{0} via the set of edges E, i.e., $\left(n_{0}, n\right) \in E^{*}$, then $n \in C$.

We prove the theorem by induction on the length of the path k from n_{0} to n i.e. $\mathrm{k}=\left|\left(n_{0}, n\right)\right|$.
Our induction hypothesis $\operatorname{Hyp}(\mathrm{k})$ is: Each node n that was reached from n_{0} through a path of length k is in C, i.e., $n \in C$.
Base case: For $\mathrm{k}=0$, we have $n=n_{0}$ and $\left(n_{0}, n_{0}\right) \in E^{*}$. Since $n_{0} \in C, \operatorname{Hyp}(0)$ holds.
Step: We assume that for k the induction hypothesis $\operatorname{Hyp}(k)$ holds, i.e., if a node n is reachable from the initial node n_{0} in k steps, i.e., $\left(n_{0}, n\right) \in E^{*}$ such that $k=\left|\left(n_{0}, n\right)\right|$, then $n \in C$.

We prove $\operatorname{Hyp}(k+1)$, which amounts to proving that n reached during the $(k+1)_{t h}$ step from n_{0} by following the if branch is in C. The case when the $(k+1)_{t h}$ iteration goes through the else branch does not change the reachable states. For any n_{k+1} that is reachable from n_{0} in $k+1$ steps, i.e. $\left|\left(n_{0}, n_{k+1}\right)\right|=k+1$, there exists n_{k} reachable from n_{0} such that $\left|\left(n_{0}, n_{k}\right)\right|=k$ and $\left(n_{k}, n_{k+1}\right) \in E$. By the induction hypothesis, $n_{k} \in C . n_{k+1} \in C$ follows immediately.

Exercise 3 Extend the BRA algorithm to detect the existence of cycles in a given finite graph. The extended algorithm returns true iff there exists $n \in N$ such that $\left(n_{0}, n\right) \in E^{*}$ and $(n, n) \in E^{+}$.

This is the algorithm to detect existence of cycles in a given finite graph. It makes use of a modified version of BRA.

```
algorthm detect_cycle
input
begin
            (C, D) := BRA (N, NO, Edges)
            foreach s in C
(Cs,Ds) := BRA (N, s, Edges)
if (s \in Ds) then
    return true
    return false
end
```

 \(N\) : set of nodes
 n0 : start node, where n0 \in N
E : set of edges, where E \subseteq N \times N

This is the moified version of BRA that is used in defining the cycle detection algorithm above.

```
algorithm BRA
            input
            N : set of nodes
            n0 : start node, where n0 \in N
            E : set of edges, where E \subseteq N \times N
        var
            C : nodes reached so far
            done : Boolean flag
            D : auxiliary set of nodes
        begin
            C := {n0}
            done := false
            while \neg done do
            D := { d \in N | \exists c \in C: (c, d) \in E }
            if \neg (D \subseteq C) then
                C := C \cup D
            else
                    done := true
            od
    return (C, D)
end
```


Homework 4

Exercise 2

1. $\forall \phi: \phi \models \alpha(\phi)$
(a) we have $\left(\phi \models p_{1} \wedge \phi \models p_{2}\right) \rightarrow \phi \models p_{1} \wedge p_{2}$
(b) $\alpha(\phi) \equiv \wedge\left\{p_{i} \in P: \phi \models p_{i}\right\}$
(c) Let the set $\left\{p_{i} \in P: \phi \models p_{i}\right\}$ has n elements such that $\alpha(\phi)=p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}$. By definition of $\alpha(\phi)$ we have $\phi \models p_{1}, \phi \models p_{2}, \ldots$, and $\phi \models p_{n}$
(d) By (a), we have $\phi \models p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}$, and $p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n} \equiv \alpha(\phi)$ follows from (b). Therefore, $\phi \models \alpha(\phi)$.
2. α is monotonic, i.e. $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow(\alpha(\phi) \models \alpha(\psi))$
(a) $\forall \sigma_{1} \sigma_{2}: \sigma_{1} \wedge \sigma_{2} \models \sigma_{1}$
(b) Let's assume $\phi=\psi$
(c) By the definition of α, we have $\alpha(\phi) \equiv \wedge\left\{p_{i} \in P: \phi \models p_{i}\right\}$ and $\alpha(\psi) \equiv \wedge\left\{p_{i} \in P: \psi \models p_{i}\right\}$.
(d) An important observation here is that any predicate in the set $\left\{p_{i} \in P: \psi \models p_{i}\right\}$ is also in $\left\{q_{i} \in P: \phi \models q_{i}\right\}$ since from $\phi \models \psi$ by (b) and each $\psi \models p_{i}$ we always have $\phi \models p_{i}$. i.e $\left\{p_{i} \in P: \phi \models p_{i}\right\}$ is the superset of $\left\{p_{i} \in P: \psi \models p_{i}\right\}$.
(e) Therefore, we have $\alpha(\phi) \equiv \alpha(\psi) \wedge q_{1} \wedge \cdots \wedge q_{m}$ where q_{1}, \ldots, q_{m} are predicates that are in $\left\{p_{i} \in P: \phi \models p_{i}\right\}$ but not in $\left\{p_{i} \in P: \psi \models p_{i}\right\}$.
(f) From $\alpha(\phi) \models \alpha(\psi) \equiv \alpha(\psi) \wedge q_{1} \wedge \cdots \wedge q_{m} \vDash \alpha(\psi)$, and by (a) we can see that $\alpha(\psi) \wedge q_{1} \wedge \cdots \wedge q_{m} \vDash \alpha(\psi)$ holds. i.e. $\alpha(\phi) \models \alpha(\psi)$.
(g) We now introduce the implication since the satisfaction was proven based on the assumption in (b). i.e ($\phi \models \psi$) \rightarrow $(\alpha(\phi) \models \alpha(\psi))$.
(h) And finally, universal quanitification is done on both variables: $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow(\alpha(\phi) \models \alpha(\psi))$
3. $\forall \phi \forall R_{1} \forall R_{2}: \operatorname{post}\left(\phi, R_{1} \vee R_{2}\right) \Longleftrightarrow \forall \phi \forall R_{1} \forall R_{2}:\left(\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)\right)$
(a) assume $\forall \phi \forall R_{1} \forall R_{2}: \operatorname{post}\left(\phi, R_{1} \vee R_{2}\right)$
(b) $\operatorname{post}\left(\phi, R_{1} \vee R_{2}\right)$ by applying \forall elimination
(c) $\exists V^{\prime \prime}: \phi(V)\left[V^{\prime \prime} / V\right] \wedge\left(R_{1}\left(V, V^{\prime}\right)\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \vee R_{2}\left(V, V^{\prime}\right)\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]\right)$ by reducing post into its definition
(d) $\exists V^{\prime \prime}:\left(\phi\left(V^{\prime \prime}\right) \wedge\left(R_{1}\left(V^{\prime \prime}, V\right)\right) \vee \exists V^{\prime \prime}:\left(\phi\left(V^{\prime \prime}\right) \wedge R_{2}\left(V^{\prime \prime}, V\right)\right)\right.$ by distributing the conjunction and the existential quantifier over the disjunction
(e) $\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)$ by rewriting back in terms of post
(f) $\forall \phi \forall R_{1} \forall R_{2}:\left(\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)\right)$ by applying \forall introduction
(g) $\forall \phi \forall R_{1} \forall R_{2}: \operatorname{post}\left(\phi, R_{1} \vee R_{2}\right) \rightarrow \forall \phi \forall R_{1} \forall R_{2}:\left(\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)\right)$ by implication introduction
(h) assume $\forall \phi \forall R_{1} \forall R_{2}:\left(\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)\right)$
(i) $\left(\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)\right)$ by applying \forall elimination
(j) $\left.\left(\exists V^{\prime \prime}: \phi(V)\left[V^{\prime \prime} / V\right] \wedge R_{1}\left(V, V^{\prime}\right)\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]\right) \vee\left(\exists V^{\prime \prime}: \phi(V)\left[V^{\prime \prime} / V\right] \wedge R_{2}\left(V, V^{\prime}\right)\right)\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]\right)$ by reducing post into its definition
(k) $\exists V^{\prime \prime}: \phi\left(V^{\prime \prime}\right) \wedge\left(R_{1}\left(V^{\prime \prime}, V\right) \vee R_{2}\left(V^{\prime \prime}, V\right)\right)$ by collecting terms over the existential quantifier and ϕ
(l) $\operatorname{post}\left(\phi, R_{1} \vee R_{2}\right)$ by rewriting back in terms of post
(m) $\forall \phi \forall R_{1} \forall R_{2}: \operatorname{post}\left(\phi, R_{1} \vee R_{2}\right)$ by applying \forall introduction
(n) $\forall \phi \forall R_{1} \forall R_{2}:\left(\operatorname{post}\left(\phi, R_{1}\right) \vee \operatorname{post}\left(\phi, R_{2}\right)\right) \rightarrow \forall \phi \forall R_{1} \forall R_{2}: \operatorname{post}\left(\phi, R_{1} \vee R_{2}\right)$ by implication introduction
4. ${ }^{1}$ post is monotonic, i.e. $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow(\operatorname{post}(\phi, \rho) \models \operatorname{post}(\psi, \rho))$
(a) $\forall \phi \forall \psi \forall \sigma: \phi \wedge \sigma \models \psi \wedge \sigma$ conjuction on both sides will not affect satisfaction of the entailment.
(b) assume $\phi=\psi$
(c) we have $\phi(V) \models \psi(V)$ by explicitly putting the variable V with the formulas
(d) $\phi(V) \wedge \rho\left(V, V^{\prime}\right) \models \psi(V) \wedge \rho\left(V, V^{\prime}\right)$ by (a)
(e) $\exists V^{\prime \prime}:\left(\phi(V)\left[V^{\prime \prime} / V\right] \wedge \rho\left(V^{\prime \prime}, V\right)\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]\right) \vDash \exists V^{\prime \prime}: \psi\left(V^{\prime \prime}\right)\left[V^{\prime \prime} / V\right] \wedge \rho\left(V^{\prime \prime}, V\right)\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]$ variable substitution and \exists introduction
(f) $\operatorname{post}(\phi, \rho) \models \operatorname{post}(\psi, \rho))$ by the definition of post
(g) $(\phi \vDash \psi) \rightarrow(\operatorname{post}(\phi, \rho) \models \operatorname{post}(\psi, \rho))$ by implication introduction from (b) and (f).
(h) $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow(\operatorname{post}(\phi, \rho) \models \operatorname{post}(\psi, \rho))$ by introducing \forall
5. ${ }^{2}$ post ${ }^{\#}$ is monotonic, i.e. $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow \operatorname{post}^{\#}(\phi, \rho) \models$ post $\left.^{\#}(\psi, \rho)\right)$
[^0]The proof follows directly from the monotonicity proofs for post and α above.
(a) assume $\phi=\psi$
(b) $\operatorname{post}(\phi, \rho) \models \operatorname{post}(\psi, \rho))$ follows since post is monotonic
(c) $\alpha(\operatorname{post}(\phi, \rho)) \models \alpha(\operatorname{post}(\psi, \rho))$ follows since α is monotonic
(d) $\left.\operatorname{post}^{\#}(\phi, \rho) \models \operatorname{post}^{\#}(\psi, \rho)\right)$ by definition of post ${ }^{\#}$
(e) $(\phi=\psi) \rightarrow\left(\right.$ post $\left.^{\#}(\phi, \rho) \models \operatorname{post}^{\#}(\psi, \rho)\right)$ by implication introduction from (a) and (d).
(f) $\forall \phi \forall \psi:(\phi \models \psi) \rightarrow\left(\right.$ post $\left.^{\#}(\phi, \rho) \models \operatorname{post}^{\#}(\psi, \rho)\right)$ by introducing \forall

Exercise 3

Let R be a transition relation over V and V^{\prime}. We define $\operatorname{post}(\phi)=\exists V^{\prime \prime}: \phi\left[V^{\prime \prime} / V\right] \wedge R\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]$.
Prove that $\bigvee_{i \geq 0}$ post $^{\#^{i}}\left(\phi_{\text {init }}\right) \models \bigvee_{j \geq 0}$ post $^{\#^{j}}\left(\alpha\left(\phi_{\text {init }}\right)\right)$.
Here we use the fact that proving $\forall A_{i} \exists B_{j}: A_{i} \models B_{j}$ is enough to prove that $A_{0} \vee A_{1} \vee \ldots \vDash B_{0} \vee B_{1} \vee \ldots$

1. $\phi \models \alpha(\phi)$ (as proven in the previous exercise)
2. post ${ }^{\#}(\phi) \models$ post $^{\#}(\alpha(\phi))$ follows since post ${ }^{\#}$ is monotonic
3. post ${ }^{\#^{i}}(\phi) \models$ post $^{\#^{i}}(\alpha(\phi))$ follows from the fact that applying post ${ }^{\#} i$ times on both side keeps the entailment since post ${ }^{\#}$ is monotonic.
4. Therefore, $\forall i \exists j$: $\operatorname{post}^{\#^{i}}(\phi) \models \operatorname{post}^{\#^{j}}(\alpha(\phi))$ holds when $j=i$.

Homework 5

Question 1

We define a constraint C_{1} over $\phi_{1}, \phi_{2}, \phi_{3}$ as follows:

$$
\begin{aligned}
C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \equiv & \\
\varphi_{\text {init }} & \models \phi_{1} \quad \wedge \\
\operatorname{post}\left(\phi_{1}, \rho_{1}\right) & \models \phi_{2} \quad \wedge \\
\operatorname{post}\left(\phi_{2}, \rho_{2}\right) & \models \phi_{3} \quad \wedge \\
\phi_{3} \wedge \varphi_{\text {err }} & \models \text { false }
\end{aligned}
$$

Prove that for each ϕ_{1}, ϕ_{2}, and ϕ_{3}, if $C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ then $\varphi_{\text {init }} \wedge\left(\rho_{1} \circ \rho_{2}\right) \wedge \varphi_{\text {err }}\left[V^{\prime} / V\right] \models$ false.
Let us assume $C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ holds.

1. $\varphi_{\text {init }} \models \phi_{1}$ from the first conjunct.
2. $\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right) \models \operatorname{post}\left(\phi_{1}, \rho_{1}\right)$ since post is monotonic.
3. From the second conjuct and by (2), we have $\operatorname{post}\left(\varphi_{i n i t}, \rho_{1}\right) \models \phi_{2}$.
4. $\operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right), \rho_{2}\right) \models \operatorname{post}\left(\phi_{2}, \rho_{2}\right)$ since post is monotonic.
5. From the third conjunct and by (4), we have $\operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right), \rho_{2}\right) \models \phi_{3}$.
6. By adding the same conjunct $\varphi_{\text {err }}$ on both sides, we have $\operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right), \rho_{2}\right) \wedge \varphi_{\text {err }} \vDash \phi_{3} \wedge \varphi_{\text {err }}$.
7. From the forth conjunct and by (6), we have $\operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1}\right), \rho_{2}\right) \wedge \varphi_{\text {err }} \vDash$ false.
8. But since $\operatorname{post}\left(\operatorname{post}\left(\phi, \rho_{1}\right), \rho_{2}\right)$ is equivalent to $\operatorname{post}\left(\phi, \rho_{1} \circ \rho_{2}\right)$ (check out Question 3 below for the proof), $\operatorname{post}\left(\varphi_{\text {init }}, \rho_{1} \circ\right.$ $\left.\rho_{2}\right) \wedge \varphi_{\text {err }} \models$ false.

Question 2

We define a constraint C_{2} over ϕ_{1}, ϕ_{2} as follows:

$$
\begin{aligned}
C_{2}\left(\phi_{1}, \phi_{2}\right) \equiv & \varphi_{\text {init }}
\end{aligned}=\phi_{1} \wedge
$$

Prove that C_{1} is satisfiable if and only if C_{2} is satisfiable, where C_{1} is defined in the previous question.

$$
C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \Longrightarrow C_{2}\left(\phi_{1}, \phi_{2}\right)
$$

1. Let us assume $C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ holds. The first and second conjuncts of C_{2} follows directly from the first and second conjuncts of C_{1}.
2. We take the third conjunct from C_{1} and add the same conjunct $\varphi_{\text {err }}$ on both sides of the entailment to get post $\left(\phi_{2}, \rho_{2}\right) \wedge$ $\varphi_{\text {err }}=\phi_{3} \wedge \varphi_{\text {err }}$.
3. From the forth conjunct of C_{1} and (2), we get $\operatorname{post}\left(\phi_{2}, \rho_{2}\right) \wedge \varphi_{\text {err }} \models$ false which is the thrid conjunct of C_{2}. This completes the proof for $C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \Longrightarrow C_{2}\left(\phi_{1}, \phi_{2}\right)$.
$C_{2}\left(\phi_{1}, \phi_{2}\right) \Longrightarrow C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$
4. Let us assume $C_{2}\left(\phi_{1}, \phi_{2}\right)$ holds. The first and second conjuncts of C_{1} follows directly from the first and second conjuncts of C_{2}.
5. Let $\phi_{3}=\operatorname{post}\left(\phi_{2}, \rho_{2}\right)$. Since $\forall \psi: \psi \models \psi$, we get $\operatorname{post}\left(\phi_{2}, \rho_{2}\right) \models \phi_{3}$. This proves the third conjunct of C_{1}.
6. In addition, from $\phi_{3}=\operatorname{post}\left(\phi_{2}, \rho_{2}\right)$ and the third conjunct of C_{2}, we get $\phi_{3} \wedge \varphi_{\text {err }} \models$ false which is the forth conjunct of C_{1}. This completes the proof for $C_{2}\left(\phi_{1}, \phi_{2}\right) \Longrightarrow C_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$.

Question 3 Prove that $\operatorname{post}\left(\operatorname{post}\left(\phi, \rho_{1}\right), \rho_{2}\right)$ is equivalent to $\operatorname{post}\left(\phi, \rho_{1} \circ \rho_{2}\right)$.

1. From $\operatorname{post}\left(\operatorname{post}\left(\phi, \rho_{1}\right), \rho_{2}\right)$, we reach $\exists v^{\prime \prime}:\left(\exists v^{\prime}: \phi\left(v^{\prime}\right) \wedge \rho_{1}\left(v^{\prime}, v^{\prime \prime}\right)\right) \wedge \rho_{2}\left(v^{\prime \prime}, v\right)$
2. For arbitrary constants a and b, this gives us $\left(\phi(a) \wedge \rho_{1}(a, b)\right) \wedge \rho_{2}(b, v)$ which is equivalent to $\phi(a) \wedge\left(\rho_{1}(a, b) \wedge \rho_{2}(b, v)\right)$ since conjunction is associative.
3. Introducting an existential quantifier on the right conjunct gives $\phi(a) \wedge\left(\exists v^{\prime \prime}: \rho_{1}\left(a, v^{\prime \prime}\right) \wedge \rho_{2}\left(v^{\prime \prime}, v\right)\right)$. But the right conjunct defines $\rho_{1} \circ \rho_{2}(a, v)$, and hence we have $\phi(a) \wedge\left(\rho_{1} \circ \rho_{2}(a, v)\right)$.
4. Introducing an existential quantifier again gives $\exists v^{\prime}: \phi\left(v^{\prime}\right) \wedge\left(\rho_{1} \circ \rho_{2}\left(v^{\prime}, v\right)\right)$ which is equivalent to post $\left(\phi, \rho_{1} \circ \rho_{2}\right)$.

Homework 6

Question 1 Compute interpolants for:
a) $x \leq 5, y \leq x$ and $y \geq 10=y \leq a$ where $a \in\{5,6,7,8,9\}$
b) $x \leq 5$ and $x \geq y, y \geq 10=x \leq a$ where $a \in\{5,6,7,8,9\}$
c) $x+1 \leq z$ and $x \geq y, y \geq z=x \leq z$

Question 2 Prove that our interpolation algorithm respects the condition imposed on the variables that occur in the computed interpolant.

Our interpolation algorithm is given below:

$$
\begin{align*}
& \exists i \exists i_{0} \\
& \exists \lambda \exists \mu: \\
& \lambda \geq 0 \wedge \mu \geq 0 \wedge \\
& \left.\left(\begin{array}{ll}
\lambda & \mu
\end{array}\right)\binom{A}{B}=0 \wedge \quad \text { (conjunct } 1\right) \tag{1}\\
& \left(\begin{array}{ll}
\lambda & \mu
\end{array}\right)\binom{a}{b} \leq-1 \wedge \quad(\text { conjunct } 2) \\
& i=\lambda A \wedge \quad \text { (conjunct3) } \\
& i_{0}=\lambda a .
\end{align*}
$$

Let ϕ_{A} and ϕ_{B} be the formuals that we want to compute an interpolant for, and whose coefficient matrices are give as A and B after rewriting all expressions ϕ_{A} and ϕ_{B} as inequalities over \leq. Let m be the number of inequalities in ϕ_{A}, n be the number of inequalities in ϕ_{B}, and k be the number of variables that appear either in ϕ_{A} or ϕ_{B} (or both). A has m rows each for each inequality in ϕ_{A}. B has n rows each for each inequality in ϕ_{B}. Both A and B are of k columns where each column contains array of values for each variable (one value per inequality).

What we need to show here is that if $j^{t h}$ column of A is 0 (the $j^{t h}$ variable is not in A) or $j^{\text {th }}$ column of B is 0 (the $j^{\text {th }}$ variable is not in B), then the $j^{\text {th }}$ column of an interpolant i should be 0 . i.e. an interpolant is defined only over the variables in both A and B.

From the assumptions on the number of inequalities in ϕ_{A} and ϕ_{B}, the total number of variables in ϕ_{A} and ϕ_{B}, and the conjuncts in our interpolatione algorithm abov, we conclude:

- λ is a row-matrix of m columns.
- μ is a row-matrix of n columns.
-

$$
\left(\begin{array}{ll}
\lambda & \mu \tag{2}
\end{array}\right)\binom{A}{B}=\lambda A+\mu B=0
$$

If the $j^{\text {th }}$ column of A is 0 , then the $j^{\text {th }}$ column of any interpolant i should be 0 by the conjunct (3) of equation (1).
If the $j^{\text {th }}$ column of B is 0 , then the $j^{\text {th }}$ column of μB is 0 . From equation (2), then it follows that the $j^{\text {th }}$ column of λA is 0 since $\lambda A+\mu B=0$. Like the first case, $j^{t h}$ column of any interpolant i should be 0 by the conjunct (3) of equation (1).

Question 4 Represent inference rules describing summarization as entailments.
The inference rules describing summarization are:
1.

$$
\frac{\left(g, l_{\text {main }}\right) \models \operatorname{init}\left(V_{G}, V_{\text {main }}\right)}{\left(\left(g, l_{\text {main }}\right),\left(g, l_{\text {main }}\right)\right) \in \operatorname{summ}_{\text {main }}}
$$

2.

$$
\frac{\left(\left(g, l_{p}\right),\left(g^{\prime}, l_{p}^{\prime}\right)\right) \in \operatorname{summ}_{p} \quad\left(\left(g^{\prime}, l_{p}^{\prime}\right),\left(g^{\prime \prime}, l_{p}^{\prime \prime}\right)\right) \models \operatorname{step}_{p}\left(V_{G}, V_{p}, V_{G}^{\prime}, V_{p}^{\prime}\right)}{\left(\left(g, l_{p}\right),\left(g^{\prime \prime}, l_{p}^{\prime \prime}\right)\right) \in \operatorname{summ}_{p}}
$$

3.

$$
\frac{\left(\left(g, l_{p}\right),\left(g^{\prime}, l_{p}^{\prime}\right)\right) \in \operatorname{summ}_{p} \quad\left(\left(g^{\prime}, l_{p}^{\prime}, l_{q}\right)\right) \models \operatorname{call}_{p, q}\left(V_{G}, V_{p}, V_{q}\right)}{\left(\left(g^{\prime}, l_{q}\right),\left(g^{\prime}, l_{q}\right)\right) \in \operatorname{summ}_{q}}
$$

4.

$$
\frac{\left(\left(g, l_{p}\right),\left(g^{\prime}, l_{p}^{\prime}\right)\right) \in \operatorname{summ}_{p}}{\left(\left(g^{\prime}, l_{p}^{\prime}, l_{q}\right)\right) \models \operatorname{call}_{p, q}\left(V_{G}, V_{p}, V_{q}\right)} \begin{gathered}
\left(\left(g^{\prime}, l_{q}\right),\left(g^{\prime \prime}, l_{q}^{\prime}\right)\right) \in \operatorname{summ}_{q} \\
\left(g^{\prime \prime}, l_{q}^{\prime}, q^{\prime \prime \prime}\right) \models \operatorname{ret}_{q}\left(V_{G}, V_{q}, V_{G}^{\prime}\right) \\
\left.\left(\left(g, l_{p}\right),\left(l_{p}^{\prime \prime \prime}, l_{p}^{\prime \prime}\right)\right) \in \operatorname{summ}_{p}^{\prime \prime}\right) \models \operatorname{soc}_{p}\left(V_{p}, V_{p}^{\prime}\right) \\
\hline
\end{gathered}
$$

Representation of these inference rules as entailments is given below:
1.

$$
\operatorname{init}\left(V_{G}, V_{\text {main }}\right) \models \operatorname{summ}_{\text {main }}\left(\left(V_{G}, V_{\text {main }}\right),\left(V_{G}, V_{\text {main }}\right)\right)
$$

2.

$$
\operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime}, V_{p}^{\prime}\right)\right) \wedge \operatorname{step}_{p}\left(\left(V_{G}^{\prime}, V_{p}^{\prime}\right),\left(V_{G}^{\prime \prime}, V_{p}^{\prime \prime}\right)\right) \models \operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime \prime}, V_{p}^{\prime \prime}\right)\right)
$$

3.

$$
\operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime}, V_{p}^{\prime}\right)\right) \wedge \operatorname{call}_{p, q}\left(\left(V_{G}^{\prime}, V_{p}^{\prime}, V_{q}\right)\right) \models \operatorname{summ}_{q}\left(\left(V_{G}^{\prime}, V_{q}\right),\left(V_{G}^{\prime}, V_{q}\right)\right)
$$

4.

$$
\begin{aligned}
& \operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime}, V_{p}^{\prime}\right)\right) \wedge \operatorname{call}_{p, q}\left(\left(V_{G}^{\prime}, V_{p}^{\prime}, V_{q}\right)\right) \wedge \operatorname{summ}_{q}\left(\left(V_{G}^{\prime}, V_{q}\right),\left(V_{G}^{\prime \prime}, V_{q}^{\prime}\right)\right) \wedge \\
& \operatorname{ret}_{q}\left(V_{G}^{\prime \prime}, V_{q}^{\prime}, V_{G}^{\prime \prime \prime}\right) \wedge \operatorname{loc}_{p}\left(V_{p}^{\prime}, V_{p}^{\prime \prime}\right) \models \operatorname{summ}_{p}\left(\left(V_{G}, V_{p}\right),\left(V_{G}^{\prime \prime \prime}, V_{p}^{\prime \prime}\right)\right)
\end{aligned}
$$

Homework 7

Question 1 For the program producer-consumer with semaphores, prove the stability of the inductive invariant given in class under transitions $P W \rightarrow P M$ and $C I \rightarrow C L$.

The given inductive invariant is:

$$
\begin{align*}
& (0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge \forall k<\text { out }: B[k]=f(g(A[k]))) \wedge \tag{1}\\
& \left(\begin{array}{c}
\left(\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C L\right) \wedge(\text { full }=\text { in }- \text { out })\right) \vee \\
\left(\left(p c_{1}=P I\right) \wedge\left(C R \leq p c_{2} \leq C I\right) \wedge(\text { full }=\text { in }- \text { out })\right) \vee \\
\left(\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\left(C R \leq p c_{2} \leq C I\right) \wedge(\text { full }=\text { in }- \text { out }-1)\right) \vee \\
\left(\left(p c_{1}=P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C L\right) \wedge(\text { full }=\text { in }- \text { out }+1)\right)
\end{array}\right) \wedge \tag{2}\\
& \left(\begin{array}{c}
\left(\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(\text { empty }+ \text { full }=N)\right) \vee \\
\left(\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(C R \leq p c_{2} \leq C M\right) \wedge(\text { empty }+ \text { full }=N-1)\right) \vee \\
\left(\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(\text { empty }+ \text { full }=N-1)\right) \vee \\
\left(\left(P W \leq p c_{1} \leq P M\right) \wedge\left(C R \leq p c_{2} \leq C M\right) \wedge(\text { empty }+ \text { full }=N-2)\right) \vee
\end{array}\right) \wedge \tag{3}\\
& \left(\begin{array}{c}
\left(p c_{1}=P S \wedge i n=0\right) \vee \\
\left(p c_{1}=P R \wedge i n<M\right) \vee \\
\left(P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[i n])\right) \vee \\
\left(P M \leq p c_{1} \leq P I \wedge i n<M \wedge b u f[i n \bmod N]=g(A[i n])\right) \vee \\
P L \leq p c_{1} \leq P F
\end{array}\right) \wedge \quad C_{4} \\
& \left(\begin{array}{c}
\left(p c_{2}=C S \wedge \text { out }=0 \wedge \forall k \in[\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])\right) \vee \\
\left(C A \leq p c_{2} \leq C R \wedge \text { out }<M \wedge \forall k \in[\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])\right) \vee \\
\left(p c_{2}=C M \wedge \text { out }<M \wedge(\forall k \in[\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])) \wedge y=g(A[\text { out }])\right) \vee \\
\left(p c_{2}=C W \wedge \text { out }<M \wedge(\forall k \in(\text { out, in }): \text { buf }[k \bmod N]=g(A[k])) \wedge y=g(A[\text { out }])\right) \vee \\
\left(p c_{2}=C I \wedge \text { out }<M \wedge(\forall k \in(\text { out, in }): \text { buf }[k \bmod N]=g(A[k])) \wedge B[\text { out }]=f(g(A[\text { out }]))\right) \vee \\
\left(p c_{2}=C L \wedge \text { out } \leq M \wedge \forall k \in[\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])\right) \vee \\
\left(p c_{2}=C F \wedge \text { out }=M\right)
\end{array}\right) \tag{5}\\
& C_{4}
\end{align*}
$$

To make application of post straight forward later when checking stability of the invariant, assume that the invariant which was given as:

$$
\begin{array}{rc}
\left(D_{11}\right) \wedge & C_{1} \\
\left(D_{21} \vee D_{22} \vee D_{23} \vee D_{24}\right) \wedge & C_{2} \\
\left(D_{31} \vee D_{32} \vee D_{33} \vee D_{34}\right) \wedge & C_{3} \\
\left(D_{41} \vee D_{42} \vee D_{43} \vee D_{44} \vee D_{45}\right) \wedge & C_{4} \\
\left(D_{51} \vee D_{52} \vee D_{53} \vee D_{54} \vee D_{55} \vee D_{56} \vee D_{57}\right) & C_{5}
\end{array}
$$

is rewritten as:

$$
\begin{aligned}
& \left(D_{11} \wedge D_{21} \wedge D_{31} \wedge D_{41} \wedge D_{51}\right) \vee \\
& \left(D_{11} \wedge D_{21} \wedge D_{31} \wedge D_{41} \wedge D_{52}\right) \vee \\
& \left(D_{11} \wedge D_{22} \wedge D_{31} \wedge D_{41} \wedge D_{51}\right) \vee \\
& \left(D_{11} \wedge D_{22} \wedge D_{31} \wedge D_{41} \wedge D_{52}\right) \vee \\
& \left(D_{11} \wedge D_{24} \wedge D_{34} \wedge D_{45} \wedge D_{57}\right)
\end{aligned}
$$

by distributing conjunctions over disjunctions, where each $D_{i j}$ represents the $j^{\text {th }}$ disjunct of the $i^{\text {th }}$ conjunct in the given invariant. Since there is one disjunct in C_{1}, four disjuncts in C_{2}, four disjuncts in C_{3}, five disjuncts in C_{4} and seven disjuncts in C_{5}, the re-written invariant will be a big disjunction of $1 \times 4 \times 4 \times 5 \times 7=560$ disjuncts (where each disjunct in itself is a conjunction).

We check stability by applying post on each of the disjuncts and checking if the resulting state is already in the invariant or not. But we know that post will be applicable on the states that satisfy the condition set by the transition. Therefore, during checking stability of the invariant with respect to a given transition, we must first filter those states post will be applicable.

1. $P W \rightarrow P M$

The transition $P W \rightarrow P M$ can be represented as $\rho\left(v, v^{\prime}\right)=\left(p c_{1}=P W \wedge p c_{1}^{\prime}=P M \wedge b u f^{\prime}=b u f[\right.$ in $\bmod N \mapsto x] \wedge x^{\prime}=$ $x \wedge y^{\prime}=y \wedge$ full $=$ full \wedge empty $=$ empty $\left.\wedge p c_{2}^{\prime}=p c_{2} \wedge i n^{\prime}=i n \wedge o u t^{\prime}=o u t\right)$.
post will not be applicable on disjuncts which contain $D_{22}, D_{24}, D_{31}, D_{32}, D_{41}, D_{42}, D_{44}$ and D_{45} since $p c_{1} \neq P W$ in such disjuncts reducing the candidates to from 560 to 28 . In addition, some disjuncts are simply unsatisfiability together which further reduces the number of candidates. For example, although D_{21} and D_{34} satisfy $p c_{1}=P W$, there is no value for $p c_{2}$ that satisfies $D_{21} \wedge D_{34}$ which makes post inapplicable over disjuncts that contain both D_{21} and D_{34}. This leaves us with only 8 disjuncts that post is applicable to $\rho\left(v, v^{\prime}\right)$, which are given below:

$$
\begin{aligned}
& \left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{51}\right) \vee \\
& \left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{52}\right) \vee \\
& \left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{56}\right) \vee \\
& \left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{57}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{43} \wedge D_{54}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{43} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{34} \wedge D_{43} \wedge D_{52}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{34} \wedge D_{43} \wedge D_{53}\right)
\end{aligned}
$$

Let us now apply post on each of these disjuncts and check if the resulting state is already in the invariant or not.
(a) $\operatorname{post}\left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{51}, \rho\right)$

```
\(=\operatorname{post}\left(0 \leq\right.\) empty \(\wedge 0 \leq\) full \(\wedge 0 \leq\) in \(\wedge 0 \leq\) out \(\wedge(\forall k<\) out : B \([k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\)
\(\left(p c_{2} \leq C A \vee p c_{2} \geq C L\right) \wedge(\) full \(=\) in - out \() \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(\) empty + full \(=N-1) \wedge\)
\(P A \leq p c_{1} \leq P W \wedge\) in \(<M \wedge x=g(A[i n]) \wedge p c_{2}=C S \wedge\) out \(=0 \wedge \forall k \in[\) out, in \():\) buf \(\left.[k \bmod N]=g(A[k]), \rho\left(v, v^{\prime}\right)\right)\)
\(=\operatorname{post}\left(0 \leq\right.\) empty \(\wedge 0 \leq\) full \(\wedge 0 \leq\) in \(\wedge 0 \leq\) out \(\wedge(\forall k<\) out \(: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C S \wedge\)
\((\) full \(=\) in - out \() \wedge(\) empty + full \(=N-1) \wedge\) in \(<M \wedge x=g(A[\) in] \() \wedge\) out \(=0 \wedge\)
\(\left.(\forall k \in[o u t, i n): b u f[k \bmod N]=g(A[k])), \rho\left(v, v^{\prime}\right)\right)\)
\(=\left(0 \leq\right.\) empty \(\wedge 0 \leq f u l l \wedge 0 \leq\) in \(\wedge 0 \leq\) out \(\wedge(\forall k<\) out \(: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C S \wedge\)
\((\) full \(=\) in - out \() \wedge(\) empty + full \(=N-1) \wedge\) in \(<M \wedge x=g(A[\) in \(]) \wedge\) out \(=0 \wedge\)
\((\forall k \in[o u t, i n): b u f[k \bmod N]=g(A[k])) \wedge b u f[i n \bmod N]=x)\)
\(\vDash D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{44} \wedge D_{51}\)
```

(b) $\operatorname{post}\left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{52}, \rho\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq f u l l \wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(p c_{2} \leq C \bar{A} \vee p c_{2} \geq C L\right) \wedge(f u l l=i n-o u t) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge($ empty + full $=N-1) \wedge$
$P A \leq p c_{1} \leq P W \wedge$ in $<M \wedge x=g(A[i n]) \wedge C A \leq p c_{2} \leq C R \wedge$ out $<M \wedge$
$\left.(\forall k \in[o u t, i n): b u f[k \bmod N]=g(A[k])), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C A \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge$
$\left.(\forall k \in[o u t, i n): b u f[k \bmod N]=g(A[k])), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq f u l l \wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C A \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N-1) \wedge i n<M \wedge x=g(A[i n]) \wedge$ out $<M \wedge$
$(\forall k \in[o u t, i n): b u f[k \bmod N]=g(A[k])) \wedge b u f[i n \bmod N]=x)$
$\vDash D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{44} \wedge D_{52}$
(c) $\operatorname{post}\left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{56}, \rho\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(p c_{2} \leq C A \vee p c_{2} \geq C L\right) \wedge(f u l l=i n-o u t) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(e m p t y+f u l l=N-1) \wedge$ $P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[$ in $]) \wedge p c_{2}=C L \wedge$ out $\leq M \wedge(\forall k \in[$ out, in $):$ buf $\left.[k \bmod N]=g(A[k])), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge(e m p t y+f u l l=N-1) \wedge i n<M \wedge x=g(A[$ in $]) \wedge$ out $\leq M \wedge$
$(\forall k \in[$ out, in $):$ buf $\left.[k \bmod N]=g(A[k])), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N-1) \wedge i n<M \wedge x=g(A[$ in $]) \wedge$ out $\leq M \wedge$
$(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge b u f[\operatorname{in} \bmod N]=x)$
$\vDash D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{44} \wedge D_{56}$
(d) $\operatorname{post}\left(D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{57}, \rho\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(p c_{2} \leq C A \vee p c_{2} \geq C L\right) \wedge($ full $=$ in - out $) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(e m p t y+f u l l=N-1) \wedge$ $P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[i n]) \wedge p c_{2}=C F \wedge$ out $\left.=M, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C F \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N-1) \wedge i n<M \wedge x=g(A[i n]) \wedge$ out $\left.=M), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C F \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $=M \wedge$ buf[in $\bmod N]=x)$
$\vDash D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{44} \wedge D_{57}$
To avoid over-writing of some buffer content during the transition, in - out $<N$ should be satisfied. This is justified for the above four cases since from full $=$ in - out and full + empty $=N-1$, we get in - out $=N-1-$ empty.
(e) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{43} \wedge D_{54}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(C R \leq p c_{2} \leq C I\right) \wedge($ full $=$ in - out -1$) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(e m p t y+f u l l=N-1) \wedge$
$P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[i n]) \wedge p c_{2}=C W \wedge$ out $<M \wedge(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge$
$\left.y=g(A[o u t]), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C W \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge y=g(A[$ out $\left.]), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C W \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge y=g(A[$ out $]) \wedge$ buf $[$ in $\bmod N]=x)$
$\models D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{44} \wedge D_{54}$
(f) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{43} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(C R \leq p c_{2} \leq C I\right) \wedge($ full $=$ in - out -1$) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(e m p t y+f u l l=N-1) \wedge$
$P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[$ in $]) \wedge p c_{2}=C I \wedge$ out $<M \wedge(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge$
$B[$ out $]=f(g(A[$ out $\left.])), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C I \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.])), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C I \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge(\forall k \in($ out, in $):$
buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $])) \wedge b u f[$ in $\bmod N]=x)$
$\vDash D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{44} \wedge D_{55}$
To avoid over-writing of some buffer content during the transition, in $-($ out +1$)<N$ should be satisfied. This is justified for the above two cases since from full $=$ in - out -1 and full + empty $=N-1$, we get in - out $-1=$ $N-1$-empty.
(g) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{34} \wedge D_{43} \wedge D_{52}, \rho\left(v, v^{\prime}\right)\right)$

$$
\begin{aligned}
& =\text { post }\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\right. \\
& \left(C R \leq p c_{2} \leq C I\right) \wedge(\text { full }=\text { in }- \text { out }-1) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(C R \leq p c_{2} \leq C M\right) \wedge(\text { empty }+f u l l=N-2) \wedge \\
& P A \leq p c_{1} \leq P W \wedge \text { in }<M \wedge x=g(A[\text { in }]) \wedge C A \leq p c_{2} \leq C R \wedge \text { out }<M \wedge \\
& \left.\forall k \in[\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k]), \rho\left(v, v^{\prime}\right)\right) \\
& =\text { post }\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C R \wedge\right. \\
& (\text { full }=\text { in }- \text { out }-1) \wedge(\text { empty }+ \text { full }=N-2) \wedge \text { in }<M \wedge x=g(A[\text { in }]) \wedge \text { out }<M \wedge \\
& \left.(\forall k \in[\text { out }, \text { in }): \text { buf }[k \text { mod } N]=g(A[k])), \rho\left(v, v^{\prime}\right)\right) \\
& =\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C R \wedge\right. \\
& (\text { full }=\text { in }- \text { out }-1) \wedge(\text { empty }+ \text { full }=N-2) \wedge \text { in }<M \wedge x=g(A[\text { in }]) \wedge \text { out }<M \wedge \\
& (\forall k \in[\text { out }, \text { in }): \text { buf }[k \operatorname{mod~} N]=g(A[k])) \wedge \text { buf }[\text { in } \bmod N]=x) \\
& \in D_{11} \wedge D_{23} \wedge D_{34} \wedge D_{44} \wedge D_{52}
\end{aligned}
$$

(h) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{34} \wedge D_{43} \wedge D_{53}, \rho\left(v, v^{\prime}\right)\right)$

```
\(=\operatorname{post}\left(0 \leq\right.\) empty \(\wedge 0 \leq\) full \(\wedge 0 \leq\) in \(\wedge 0 \leq\) out \(\wedge(\forall k<\) out \(: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\)
\(\left(C R \leq p c_{2} \leq C I\right) \wedge(\) full \(=\) in - out -1\() \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(C R \leq p c_{2} \leq C M\right) \wedge(\) empty \(+f u l l=N-2) \wedge\)
\(P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[i n]) \wedge p c_{2}=C M \wedge\) out \(<M \wedge\)
\(\forall k \in[\) out, in \():\) buf \([k \bmod N]=g(A[k]) \wedge y=g(A[\) out \(\left.]), \rho\left(v, v^{\prime}\right)\right)\)
\(=\operatorname{post}\left(0 \leq\right.\) empty \(\wedge 0 \leq\) full \(\wedge 0 \leq\) in \(\wedge 0 \leq\) out \(\wedge(\forall k<\) out \(: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C M \wedge\)
\((\) full \(=\) in - out -1\() \wedge(\) empty + full \(=N-2) \wedge i n<M \wedge x=g(A[i n]) \wedge\) out \(<M \wedge\)
\((\forall k \in[\) out, in \():\) buf \([k \bmod N]=g(A[k])) \wedge y=g(A[\) out \(\left.]), \rho\left(v, v^{\prime}\right)\right)\)
\(=\left(0 \leq\right.\) empty \(\wedge 0 \leq\) full \(\wedge 0 \leq\) in \(\wedge 0 \leq\) out \(\wedge(\forall k<\) out \(: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C M \wedge\)
\((\) full \(=\) in - out -1\() \wedge(\) empty + full \(=N-2) \wedge i n<M \wedge x=g(A[i n]) \wedge\) out \(<M \wedge\)
\((\forall k \in[\) out, in \():\) buf \([k \bmod N]=g(A[k])) \wedge y=g(A[o u t]) \wedge b u f[\) in \(\bmod N]=x)\)
\(\vDash D_{11} \wedge D_{23} \wedge D_{34} \wedge D_{44} \wedge D_{53}\)
```

To avoid over-writing of some buffer content during the transition, in - out $<N$ should be satisfied. This is justified for the above two cases since from full $=$ in - out -1 and full + empty $=N-2$, we get in - out $=N-1-$ empty.

Therefore, we can say that the invariant is stable under the transition $P W \rightarrow P M$ since applying the transition on the invariant results only in states that are already in the invariant.
2. $C I \rightarrow C L$

The transition $C I \rightarrow C L$ can be represented as $\rho\left(v, v^{\prime}\right)=\left(p c_{2}=C I \wedge p c_{2}^{\prime}=C L \wedge\right.$ out $=o u t+1 \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge f u l l^{\prime}=$ full $\left.\wedge e m p t y^{\prime}=e m p t y \wedge p c_{1}^{\prime}=p c_{1} \wedge i n^{\prime}=i n \wedge b u f^{\prime}=b u f\right)$.
Like the case for the first question, we identify the applicable disjuncts. post will not be applicable on disjuncts which contain $D_{21}, D_{24}, D_{32}, D_{34}, D_{51}, D_{52}, D_{53}, D_{54}, D_{56}$ and D_{57} since $p c_{2} \neq C I$ in such disjuncts reducing the candidates to from 448 to 20 . In addition, some disjuncts are simply unsatisfiability together. For example, although D_{22} and D_{33} satisfy $p c_{2}=C I$, there is no value for $p c_{1}$ that satisfies $D_{22} \wedge D_{33}$ which makes post inapplicable over disjuncts that contain both D_{22} and D_{33}. This leaves us with only 7 disjuncts that post is applicable with respect to $\rho\left(v, v^{\prime}\right)$, which are given below:

$$
\begin{aligned}
& \left(D_{11} \wedge D_{22} \wedge D_{31} \wedge D_{44} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{41} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{42} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{43} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{45} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{43} \wedge D_{55}\right) \vee \\
& \left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{44} \wedge D_{55}\right)
\end{aligned}
$$

Let us now apply post on each of these disjuncts and check if the resulting state is already in the invariant or not.
(a) $\operatorname{post}\left(D_{11} \wedge D_{22} \wedge D_{31} \wedge D_{44} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1}=P I\right) \wedge\left(C R \leq p c_{2} \leq C I\right) \wedge$
$($ full $=$ in - out $) \wedge\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(e m p t y+f u l l=N) \wedge P M \leq p c_{1} \leq P I \wedge$
in $<M \wedge$ buf $[$ in $\bmod N]=g(A[$ in $]) \wedge p c_{2}=C I \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.]))), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq i n \wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P I \wedge p c_{2}=C I \wedge$
full $=$ in - out \wedge empty $+f u l l=N \wedge$ in $<M \wedge$ buf $[$ in $\bmod N]=g(A[i n]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.]))), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P I \wedge p c_{2}=C L \wedge$ full $=$ in - out $+1 \wedge$ empty + full $=N \wedge$ in $<M \wedge$ buf $[$ in $\bmod N]=g(A[$ in $]) \wedge$ out $\leq M \wedge(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge$
$B[$ out -1$]=f(g(A[$ out -1$])))$
$\vDash D_{11} \wedge D_{24} \wedge D_{31} \wedge D_{44} \wedge D_{56}$
(b) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{41} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(C R \leq p c_{2} \leq C I\right) \wedge($ full $=$ in - out -1$) \wedge\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge$
$($ empty + full $=N) \wedge p c_{1}=P S \wedge i n=0 \wedge p c_{2}=C I \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.]))), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P S \wedge p c_{2}=C I \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N) \wedge$ in $=0 \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.]))), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $-1: B[k]=f(g(A[k]))) \wedge p c_{1}=P S \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N) \wedge$ in $=0 \wedge$ out $\leq M \wedge$
$(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out -1$]=f(g(A[$ out -1$])))$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P S \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N) \wedge$ in $=0 \wedge$ out $\leq M \wedge(\forall k \in[$ out,in $):$ buf $[k \bmod N]=g(A[k])))$
$\vDash D_{11} \wedge D_{21} \wedge D_{31} \wedge D_{41} \wedge D_{56}$
(c) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{42} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$

$$
\begin{aligned}
& =\text { post }\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\right. \\
& \left(C R \leq p c_{2} \leq C I\right) \wedge(\text { full }=\text { in }- \text { out }-1) \wedge\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge \\
& (\text { empty }+ \text { full }=N) \wedge p c_{1}=P R \wedge \text { in }<M \wedge p c_{2}=C I \wedge \text { out }<M \wedge \\
& \left.(\forall k \in(\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])) \wedge B[\text { out }]=f(g(A[\text { out }]))), \rho\left(v, v^{\prime}\right)\right) \\
& =\text { post }\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge p c_{1}=P R \wedge p c_{2}=C I \wedge\right. \\
& (\text { full }=\text { in }- \text { out }-1) \wedge(\text { empty }+ \text { full }=N) \wedge \text { in }<M \wedge \text { out }<M \wedge \\
& \left.(\forall k \in(\text { out }, \text { in }): \text { buf }[k \text { mod } N]=g(A[k])) \wedge B[\text { out }]=f(g(A[\text { out }]))), \rho\left(v, v^{\prime}\right)\right) \\
& =\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 1 \leq \text { out } \wedge(\forall k<\text { out }-1: B[k]=f(g(A[k]))) \wedge p c_{1}=P R \wedge p c_{2}=C L \wedge\right. \\
& (\text { full = in }- \text { out }) \wedge(\text { empty }+ \text { full }=N) \wedge \text { in }<M \wedge \text { out } \leq M \wedge \\
& (\forall k \in[\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])) \wedge B[\text { out }-1]=f(g(A[\text { out }-1]))) \\
& =\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 1 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge p c_{1}=P R \wedge p c_{2}=C L \wedge\right. \\
& (\text { full }=\text { in }- \text { out }) \wedge(\text { empty }+ \text { full }=N) \wedge \text { in }<M \wedge \text { out } \leq M \wedge(\forall k \in[\text { out }, \text { in }): b u f[k \bmod N]=g(A[k]))) \\
& \in D_{11} \wedge D_{21} \wedge D_{31} \wedge D_{42} \wedge D_{56}
\end{aligned}
$$

(d) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{43} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(C R \leq p c_{2} \leq C I\right) \wedge($ full $=$ in - out -1$) \wedge\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge$
$($ empty + full $=N) \wedge P A \leq p c_{1} \leq P W \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge p c_{2}=C I \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.]))), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P A \wedge p c_{2}=C I \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.]))), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $-1: B[k]=f(g(A[k]))) \wedge p c_{1}=P A \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $\leq M \wedge$
$(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out -1$]=f(g(A[$ out -1$])))$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P A \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge($ empty + full $=N) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $\leq M \wedge(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])))$ $\vDash D_{11} \wedge D_{21} \wedge D_{31} \wedge D_{43} \wedge D_{56}$
(e) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{31} \wedge D_{45} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$

$$
\begin{aligned}
& =\text { post }\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge\right. \\
& \left(C R \leq p c_{2} \leq C I\right) \wedge(\text { full }=\text { in }- \text { out }-1) \wedge\left(p c_{1} \leq P A \vee p c_{1} \geq P I\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge \\
& (\text { empty }+ \text { full }=N) \wedge P L \leq p c_{1} \leq P F \wedge p c_{2}=C I \wedge \text { out }<M \wedge \\
& \left.(\forall k \in(\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])) \wedge B[\text { out }]=f(g(A[\text { out }]))), \rho\left(v, v^{\prime}\right)\right) \\
& =\text { post }\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 0 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge P L \leq p c_{1} \leq P F \wedge p c_{2}=C I \wedge\right. \\
& (\text { full }=\text { in }- \text { out }-1) \wedge(\text { empty }+ \text { full }=N) \wedge \text { out }<M \wedge \\
& \left.(\forall k \in(\text { out }, \text { in }): \text { buf }[k \bmod N]=g(A[k])) \wedge B[\text { out }]=f(g(A[\text { out }]))), \rho\left(v, v^{\prime}\right)\right) \\
& =\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 1 \leq \text { out } \wedge(\forall k<\text { out }-1: B[k]=f(g(A[k]))) \wedge P L \leq p c_{1} \leq P F \wedge p c_{2}=C L \wedge\right. \\
& (\text { full }=\text { in }- \text { out }) \wedge(e m p t y+\text { full }=N) \wedge \text { out } \leq M \wedge \\
& (\forall k \in[\text { out, in }): \text { buf }[k \operatorname{mod~} N]=g(A[k])) \wedge B[\text { out }-1]=f(g(A[\text { out }-1]))) \\
& =\left(0 \leq \text { empty } \wedge 0 \leq \text { full } \wedge 0 \leq \text { in } \wedge 1 \leq \text { out } \wedge(\forall k<\text { out }: B[k]=f(g(A[k]))) \wedge P L \leq p c_{1} \leq P F \wedge p c_{2}=C L \wedge\right. \\
& (f u l l=\text { in }- \text { out }) \wedge(\text { empty }+f u l l=N) \wedge \text { out } \leq M \wedge(\forall k \in[\text { out }, \text { in }): b u f[k \operatorname{modN]=g(A[k])))} \\
& =D_{11} \wedge D_{21} \wedge D_{31} \wedge D_{45} \wedge D_{56}
\end{aligned}
$$

(f) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{43} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(C R \leq p c_{2} \leq C I\right) \wedge($ full $=$ in - out -1$) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge(e m p t y+f u l l=N-1) \wedge$
$P A \leq p c_{1} \leq P W \wedge i n<M \wedge x=g(A[i n]) \wedge p c_{2}=C I \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $\left.]=f(g(A[o u t])), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C I \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge x=g(A[$ in $]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.])), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $-1: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C L \wedge$
$($ full $=$ in - out $) \wedge(e m p t y+f u l l=N-1) \wedge i n<M \wedge x=g(A[$ in $]) \wedge$ out $\leq M \wedge$
$(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out -1$]=f(g(A[$ out -1$])))$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P W \wedge p c_{2}=C L \wedge f u l l=$ in - out \wedge
$(e m p t y+f u l l=N-1) \wedge i n<M \wedge x=g(A[i n]) \wedge$ out $\leq M \wedge(\forall k \in[$ out, in $): b u f[k \bmod N]=g(A[k])))$
$\vDash D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{43} \wedge D_{56}$
(g) $\operatorname{post}\left(D_{11} \wedge D_{23} \wedge D_{33} \wedge D_{44} \wedge D_{55}, \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge\left(p c_{1} \leq P M \vee p c_{1} \geq P L\right) \wedge$
$\left(C R \leq p c_{2} \leq C I\right) \wedge($ full $=$ in - out -1$) \wedge\left(P W \leq p c_{1} \leq P M\right) \wedge\left(p c_{2} \leq C A \vee p c_{2} \geq C W\right) \wedge($ empty $+f u l l=N-1) \wedge$
$P M \leq p c_{1} \leq P I \wedge$ in $<M \wedge$ buf $[$ in $\bmod N]=g(A[$ in $]) \wedge p c_{2}=C I \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.])), \rho\left(v, v^{\prime}\right)\right)$
$=\operatorname{post}\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 0 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C I \wedge$
$($ full $=$ in - out -1$) \wedge($ empty + full $=N-1) \wedge$ in $<M \wedge$ buf $[$ in $\bmod N]=g(A[$ in $]) \wedge$ out $<M \wedge$
$(\forall k \in($ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out $]=f(g(A[$ out $\left.])), \rho\left(v, v^{\prime}\right)\right)$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $-1: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C L \wedge$
$(f u l l=$ in $-o u t) \wedge($ empty $+f u l l=N-1) \wedge$ in $<M \wedge b u f[$ in $\bmod N]=g(A[$ in $]) \wedge$ out $\leq M \wedge$
$(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])) \wedge B[$ out -1$]=f(g(A[$ out -1$])))$
$=\left(0 \leq\right.$ empty $\wedge 0 \leq$ full $\wedge 0 \leq$ in $\wedge 1 \leq$ out $\wedge(\forall k<$ out $: B[k]=f(g(A[k]))) \wedge p c_{1}=P M \wedge p c_{2}=C L \wedge f u l l=$ in - out \wedge $($ empty + full $=N-1) \wedge i n<M \wedge$ buf $[$ in $\bmod N]=g(A[$ in $]) \wedge$ out $\leq M \wedge(\forall k \in[$ out, in $):$ buf $[k \bmod N]=g(A[k])))$ $\models D_{11} \wedge D_{21} \wedge D_{33} \wedge D_{44} \wedge D_{56}$

Therefore, we can say that the invariant is stable under the transition $C I \rightarrow C L$ since applying the transition on the invariant results only in states that are already in the invariant.

Question 2 Consider the Dijkstra's two-threaded algorithm. Prove or refute that the inductive invariant given in class is the strongest one, i.e. that every invariant that implies the given one is already equivalent to the given one.

The given inductive invariant is:

$$
\begin{equation*}
\binom{\left(p c_{1} \in\left\{S, L_{2}\right\} \wedge \neg r e q_{1}\right) \vee}{\left(p c_{1} \in\left\{L_{1}, C\right\} \wedge r e q_{1}\right)} \wedge\binom{\left(p c_{2} \in\left\{S, L_{2}\right\} \wedge \neg r e q_{2}\right) \vee}{\left(p c_{2} \in\left\{L_{1}, C\right\} \wedge r e q_{2}\right)} \wedge \neg\left(p c_{1}=p c_{2}=C\right) \tag{3}
\end{equation*}
$$

One way of proving (or refuting) is to compute the strongest inductive invariant and compare it with the given inductive invariant. The computed strongest invariant is:
$\left(p c_{1}=S \wedge \neg r e q_{1} \wedge p c_{2}=S \wedge \neg r e q_{2}\right) \vee\left(p c_{1}=L_{1} \wedge r e q_{1} \wedge p c_{2}=S \wedge \neg r e q_{2}\right) \vee\left(p c_{1}=S \wedge \neg r e q_{1} \wedge p c_{2}=L_{1} \wedge r e q_{2}\right) \vee$ $\left(p c_{1}=L_{1} \wedge r e q_{1} \wedge p c_{2}=L_{1} \wedge r e q_{2}\right) \vee\left(p c_{1}=L_{1} \wedge r e q_{1} \wedge p c_{2}=C \wedge r e q_{2}\right) \vee\left(p c_{1}=L_{1} \wedge r e q_{1} \wedge p c_{2}=L_{2} \wedge \neg r e q_{2}\right) \vee$ $\left(p c_{1}=S \wedge \neg r e q_{1} \wedge p c_{2}=L_{2} \wedge \neg r e q_{2}\right) \vee\left(p c_{1}=C \wedge r e q_{1} \wedge p c_{2}=L_{2} \wedge \neg r e q_{2}\right) \vee\left(p c_{1}=C \wedge r e q_{1} \wedge p c_{2}=L_{1} \wedge r e q_{2}\right) \vee$ $\left(p c_{1}=C \wedge r e q_{1} \wedge p c_{2}=S \wedge \neg r e q_{2}\right) \vee\left(p c_{1}=S \wedge \neg r e q_{1} \wedge p c_{2}=C \wedge r e q_{2}\right) \vee\left(p c_{1}=L_{2} \wedge \neg r e q_{1} \wedge p c_{2}=L_{1} \wedge r e q_{2}\right) \vee$ $\left(p c_{1}=L_{2} \wedge \neg r e q_{1} \wedge p c_{2}=C \wedge r e q_{2}\right) \vee\left(p c_{1}=L_{2} \wedge \neg r e q_{1} \wedge p c_{2}=S \wedge \neg r e q_{2}\right)$

The given invariant contians the state satisfying（ $p c_{1}=L_{2} \wedge \neg r e q_{1} \wedge p c_{2}=L_{2} \wedge \neg r e q_{2}$ ）which is not in the strongest inductive invariant．Therefore，the given inductive invariant is not the strongest one．

Question 3 The following mutual exclusion algorithm for 2 threads is suggested：
initially turn $\in\{1,2\} \wedge Q_{1}=Q_{2}=$ false
// Thread 1:
// Thread 2:
while(true) \{
while(true) \{
// noncritical section
// noncritical section
A: Q_{1} :=true
A: Q_{2} :=true
B: turn:=1
C: 〈await $\neg Q_{2} \vee$ turn $\left.=2\right\rangle$
// critical section
D: $Q_{1}:=\mathrm{fal}$ se
// noncritical section
\}
B: turn:=2
C: 〈await $\neg Q_{1} \vee$ turn=1〉
// critical section
D: Q_{2} :=false
// noncritical section

Prove or refute the mutual exclusion property，which here says that in any state reachable from the initial ones the two threads are not simultaneously at the critical locations D ．You may assume that the threads start at locations A and the transitions between each pair of labels is atomic．
One way to prove（or refute）mutual exclusiveness is to compute the strongest inductive invariant by staring from the inital state and applying the possible transitions from both threads until all computed states are already reached．

The strongest inductive invariant is：

$$
I=\quad \begin{array}{ll}
\left(P C_{1}=A \wedge P C_{2}=A \wedge \neg Q_{1} \wedge \neg Q_{2}\right) & \vee\left(P C_{1}=B \wedge P C_{2}=A \wedge Q_{1} \wedge \neg Q_{2}\right) \vee \\
\left(P C_{1}=A \wedge P C_{2}=B \wedge \neg Q_{1} \wedge Q_{2}\right) & \vee\left(P C_{1}=C \wedge P C_{2}=A \wedge Q_{1} \wedge \neg Q_{2} \wedge \text { turn }=1\right) \vee \\
\left(P C_{1}=B \wedge P C_{2}=B \wedge Q_{1} \wedge Q_{2}\right) & \vee\left(P C_{1}=A \wedge P C_{2}=C \wedge \neg Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) \vee \\
\left(P C_{1}=D \wedge P C_{2}=A \wedge Q_{1} \wedge \neg Q_{2} \wedge \text { turn }=1\right) \vee\left(P C_{1}=C \wedge P C_{2}=B \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) \vee \\
\left(P C_{1}=B \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) & \vee\left(P C_{1}=A \wedge P C_{2}=D \wedge \neg Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) \vee \\
\left(P C_{1}=D \wedge P C_{2}=B \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) & \vee\left(P C_{1}=C \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) \vee \\
\left(P C_{1}=C \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) & \vee\left(P C_{1}=B \wedge P C_{2}=D \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) \vee \\
\left(P C_{1}=D \wedge P C_{2}=C \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=2\right) & \vee\left(P C_{1}=C \wedge P C_{2}=D \wedge Q_{1} \wedge Q_{2} \wedge \text { turn }=1\right) \vee
\end{array}
$$

and，we can see that there is no reachable state that satisfies $\left(P C_{1}=D \wedge P C_{2}=D\right)$ ．

Homework 8

Question 1 In class a formula I for the Szymanski's mutual exclusion protocol was given as:

$$
\begin{aligned}
& \text { Let } \\
& L_{j}=\left\{t \in \text { Tid } \mid p c_{t}=l_{j}\right\} \text { forallj }: 1 \leq j \leq 12 \text {, } \\
& L_{j 1, j 2, \ldots, j m}=L_{j 1} \cup L_{j 2} \cup \ldots \cup L_{j m}=\bigcup_{i=1}^{m} L_{j i}, \\
& F_{k}=\{t \in \text { Tid } \mid \text { flag }[t]=k\} \text { forall } k: 0 \leq k \leq 4 \text {, } \\
& F_{k 1, k 2, \ldots, k m}=F_{k 1} \cup F_{k 2} \cup \ldots \cup F_{k m}=\bigcup_{i=1}^{m} F_{k i}, \\
& I F=\binom{F_{0}=L_{1,2} \wedge F_{1}=L_{3,4} \wedge F_{2} \subseteq L_{7,8} \wedge F_{3}=L_{5,6,8} \wedge}{F_{4}=L_{9, \ldots, 12} \wedge T i d \subseteq F_{0, \ldots, 4}}, \\
& A_{0}=\left(L_{8, \ldots, 12} \neq \emptyset \rightarrow L_{4}=\emptyset\right) \text {, } \\
& A_{1}=\left(L_{8, \ldots, 12} \neq \emptyset \rightarrow L_{8, \ldots, 12} \cap F_{3,4} \neq \emptyset\right) \text {, } \\
& A_{2}=\left(\forall t \in L_{10,11,12},: \forall k<t: k \notin L_{5, \ldots, 12}\right) \text {, } \\
& A_{3}=\left(L_{12} \neq \emptyset \rightarrow L_{5, \ldots, 12} \subseteq F_{4}\right) \text {, } \\
& \text { and } \\
& I=I F \wedge A_{0} \wedge A_{1} \wedge A_{2} \wedge A_{3} .
\end{aligned}
$$

1. Prove that I is stable under each transition at locations l_{5} till l_{12} of each thread.
$(* * * * * * * * * * * * * * * *$ to be added soon $* *)$
2. Show that I implies the mutual exclusion property, namely, that $\forall i, j \in \operatorname{Tid}:\left(l_{i}=10=l_{j}\right) \rightarrow(i=j)$.

We can show the property by assuming the contrary and reaching a contradiction.
Let us assume $\exists i, j \in \operatorname{Tid}:\left(l_{i}=10=l_{j}\right) \wedge(i \neq j)$.
Case $i<j$: by A_{2} we get $i \notin L_{5, \ldots, 12}$ which is a contradiction to $l_{i}=10$.
Case $j<i$: similarly, by A_{2} we get $j \notin L_{5, \ldots, 12}$ which is a contradiction to $l_{j}=10$.
3. Assume that the transition at location l_{11} is replaced by a no-operation (which changes just the program counter of the executing thread, while the remaining variables retain their values). Is the mutual exclusion property still satisfied?

Yes, the mutual exclusion property is still satisfied. The conjunct A_{3} does not hold anymore, and the new inductive invariant will be $I=I F \wedge A_{0} \wedge A_{1} \wedge A_{2}$, which still contains A_{2} that ensures mutual exclusion.
However, since some thread may fail to close the door, the next batch of threads may come in and access the critical section even before that thread. This may happen infinitely often so that this thread may never actually get access the critical section. So, the algorithm will not be fair anymore.

Question 2 (An optional task with an increased difficulty level.) Let (L, \leq) be a complete lattice (i.e. a partial order in which for every set $A \subseteq L$, the least upper bound $\sup A$ and the greatest lower bound $\inf A$ exist). Let $f: L \rightarrow L$.

1. If f is monotone, then the least fixpoint of f, written $l f p(f)$, exists and is equal to $\inf \{x \in L \mid f(x)=x\}=\inf \{x \in L \mid f(x) \leq$ $x\}$.
There are three proofs to be done here:

- show that $l f p(f)$ exists (let's call it P_{1}),
- show that $l f p(f)=\inf \{x \mid f(x)=x\}$ (let's call it P_{2}), and
- show that $l f p(f)=\inf \{x \mid f(x) \leq x\} \quad$ (let's call it P_{3}).
(a) Let $l=\inf \{x \mid f(x) \leq x\}$, i.e. l is the greatest lower bound of $\{x \mid f(x) \leq x\}$.
(b) We get $f(l) \leq l$.
(c) $\forall: y f(y) \leq y \rightarrow y \geq l$.
(d) since f is monotone, we have $f(f(l)) \leq f(l)$.
(e) By (c), we have $f(l) \geq l$.
(f) $f(l)=l$, i.e. l is a fixpoint, from (b) and (e) proving P_{1}.
(g) l is the least fixpoint by (a) and (f) proving P_{3}.
(h) $l \in\{x \mid f(x)=x\}$ by (f).
(i) $l=\inf \{x \mid f(x)=x\}$ by (a) since $\{x \mid f(x)=x\} \subseteq\{x \mid f(x) \leq x\}$ proving P_{2}.

2. For all nonempty chains $C \subseteq L$, if we have $\sup f(C)=f(\sup C)$, then $l f p(f)=\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\}$.

Let $f(B)=B$ be any fixpoint, we first show that $\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\} \leq B$, and then that it is a fixpoint. We will prove by induction that $\forall i \in \mathbb{N}_{0}: f^{i}(\inf L) \leq B$.
(a) base case: $\mathbf{i}=0 . f^{i}(\inf L)=f^{0}(\inf L)=\inf L \leq B$.
(b) induction step: we assume $f^{i-1}(\inf L) \leq B$, and then we try to show $f^{i}(\inf L) \leq B$.
(c) $f^{i}(\inf L)=f\left(f^{i-1}(\inf L)\right)$.
(d) $f\left(f^{i-1}(\inf L)\right) \leq \sup \left\{f\left(f^{i-1}(\inf L)\right), f(B)\right\}$.
(e) $f\left(f^{i-1}(\inf L)\right) \leq f\left(\sup \left\{f^{i-1}(\inf L), B\right\}\right)$ by the assumption for non-empty chains.
(f) $f\left(f^{i-1}(\inf L)\right) \leq f(B)$ by inductive hypothesis.
(g) $f^{i}(\inf L) \leq B$ from $f(B)=B$, and this shows $\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\} \leq l f p(f)$.
(h) $f\left(\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\}\right)=\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}^{+}\right\}$.
(i) $f\left(\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\}\right)=\sup \left\{\left\{f^{i}(\inf L) \mid i \in \mathbb{N}^{+}\right\} \cup\{\inf L\}\right\}=\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\}$ since adding inf L to the set will not affect the value of \sup for the set; i.e. $\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\}$ is a fixpoint.
(j) By (g) and (i), lfp $(f)=\sup \left\{f^{i}(\inf L) \mid i \in \mathbb{N}_{0}\right\}$.

Homework 9

1. Infer the type in the empty typing environment:
```
let fun f x y =
    if x $>$ y then true
    else false
in f 0
end
T1 := {f : int -> int -> bool, x: = int, y := int}
T1 |- > : int -> int -> bool
T1 |- x : int
T1 |- y : int
------------------- T1 |- true : bool
T1 |- x > y : bool T1 |- false : bool
---------------------------------------------
{f : int -> int -> bool, x: = int, y := int} {f : int -> int -> bool} |- f : int -> int -> bool
    |- if x > y then true else false : bool {f : int -> int -> bool} |- 0 : int
{} |> fun f x y = {f : int -> int -> bool} |- f 0: int -> bool
    if x > y then true else false :
    {f : int -> int -> bool}
{} |- let fun f x y = if x > y then true else false in f 0 end : int -> bool
```

2. Which typing environment is obtained by typing the following declarations in the empty typing environment:
3. val $\mathrm{t}=3\{t:$ int $\}$
4. fun fib $\mathrm{n}=$ if $\mathrm{n}<3$ then 1 else fib $(\mathrm{n}-1)+$ fib($\mathrm{n}-2)\{$ fib: int \rightarrow int $\}$
5. fun square $\mathrm{r}=$ let fun exp $\mathrm{y} \mathrm{x}=$ if $\mathrm{y}=0$ then 1 else if $\mathrm{y}<0$ then 0 else $\mathrm{x} *(\exp (\mathrm{y}-1) \mathrm{x})$ in $\exp 2 \mathrm{r}$ end $\{$ square $:$ int \rightarrow int $\}$
6. Which sequence of value environments is obtained by evaluating the following program?
fun $\mathrm{fx}=$ if x then 1 else 0 ;
val $\mathrm{x}=5^{*} 7$;
fun $\mathrm{g} \mathrm{z}=\mathrm{f}(\mathrm{z}<\mathrm{x})<\mathrm{x}$;
val $\mathrm{x}=\mathrm{g} 5$;
val $\mathrm{k}=$ let fun $\mathrm{h} \mathrm{x}=\mathrm{x} * \mathrm{x}$ in h end;
Note: In the script the type does not need to be specified for functions, so it is left out here as well (unlike during the exercises and the lecture).

$$
[\mathrm{f}:=(\text { fun } \mathrm{f} x=\text { if } \mathrm{x} \text { then } 1 \text { else } 0,[])]
$$

$$
[\mathrm{f}:=(\text { fun } \mathrm{f} x=\text { if } \mathrm{x} \text { then } 1 \text { else } 0,[]), \mathrm{x}:=35]
$$

[$\mathrm{f}:=($ fun $\mathrm{f} x=$ if x then 1 else $0,[]), \mathrm{x}:=35$,
$\mathrm{g}:=($ fun $\mathrm{g} \mathrm{z}=\mathrm{f}(\mathrm{z}<\mathrm{x})<\mathrm{x},[\mathrm{x}:=35, \mathrm{f}:=($ fun $\mathrm{fx}=$ if x then 1 else $0,[])])]$
$[\mathrm{f}:=($ fun $\mathrm{fx}=$ if x then 1 else $0,[])$,
$\mathrm{g}:=($ fun $\mathrm{g} \mathrm{z}=\mathrm{f}(\mathrm{z}<\mathrm{x})<\mathrm{x},[\mathrm{x}:=35, \mathrm{f}:=($ fun $\mathrm{f} \mathrm{x}=$ if x then 1 else $0,[])]), \mathrm{x}:=$ true]
$[\mathrm{f}:=($ fun $\mathrm{fx}=$ if x then 1 else $0,[])$,
$\mathrm{g}:=($ fun $\mathrm{g} \mathrm{z}=\mathrm{f}(\mathrm{z}<\mathrm{x})<\mathrm{x},[\mathrm{x}:=35, \mathrm{f}:=($ fun $\mathrm{f} x=$ if x then 1 else $0,[])]), \mathrm{x}:=$ true, $\mathrm{k}:=\left(\right.$ fun $\left.\left.\mathrm{hx}=\mathrm{x}^{*} \mathrm{x},[]\right)\right]$
4. Evaluate the following expression: let fun square $r=$ let fun $\exp y x=$ if $y=0$ then 1 else if $y ; 0$ then 0 else x * (exp ($y-1$) x) in exp $2 r$ end in square 5 end

$E:=$
let fun exp y x $=$
F
in
exp $2 r$
end
F $:=$
if $y=0$ then
1
else
G

$x *(\exp (y-1) x))$

5. Formalize as a refinement type: the value of x is a negative integer that is greater then the sum of values of y and z. $x:\{v: \operatorname{int} \mid v<0 \wedge v>y+z\}$
6. Formalize as a refinement type: the value of f is a function that takes as input a positive integer and returns the doubled value. $f:(x:\{v:$ int $\mid v>0\} \rightarrow\{v:$ int $\mid v=2 n\})$

Homework 10

Part I - Refinement types Provide refinement type derivation for the following functions (as shown on Slides 16.4 and 16.5).

1. The fibonacci sequence:
fun fib $n=$ if $\mathrm{n}<3$ then 1 else
let val m = fib ($n-1$) in
$m+f i b(n-2)$
```
R1 := {fib : (n : r1 -> r2, n : r1}
R2 := R1, n >= 3, m : r3
r1 = {v : int | P1(v,..)}
r2 = {v : int | P2(v,..)}
r3 = r2[n-1/n]
r4 = r2[n-2/n]
```


2. The maximum of two numbers:
fun max $x=$ if $\mathrm{x}>\mathrm{y}$ then x else y

R1 := \{max : (x : r1 -> y: r2 -> r3, x : r1, y : r2\}
r3 $=\{v$: int | P3(v,..) \}

\{\} |> max x y : (x : r1 $->$ y : r2 \rightarrow r3) : R1
possible solutions: $\mathrm{P} 3=(\mathrm{v}>\mathrm{y}$ \or $\mathrm{x}<=\mathrm{v}$), $\mathrm{P} 3=$ true
3. Factorial of an integer n :

```
fun fact n =
    if n < 1 then 1
    else
            let val m = fact (n - 1) in
            n * m
```


Part II - LTL

A. Let $A P=\{$ green, yellow, red $\}$ and $\sigma=(\{\text { green }\}\{\text { green }\}\{\text { green }\}\{\text { yellow }\}\{\text { red }\}\{\text { red }\}\{\text { red }\}\{\text { yellow, red }\})^{\omega}$. Does σ satisfy the following properties?

1. Ogreen \vee yellow

Yes.
2. \neg green U red

No.
3. $\neg($ green \cup red $)$

Yes.
B. Let $A P=\{$ green, yellow, red $\}$. Write the following properties as $L T L$ formulas (derived operators are allowed).

1. Red and yellow occur together infinitely often.$\diamond($ red \wedge yellow $)$.
2. From some time point onward red and green never occur together.
$\diamond \square(\neg($ red \wedge green $))$.
3. Whenever green turns on, green continues for at least two consecutive time units.
$\square(\neg$ green $\wedge \bigcirc$ green $\rightarrow \bigcirc \bigcirc$ green $\wedge \bigcirc \bigcirc \bigcirc$ green $)$.
C. Consider a program P with State $=\left\{s_{0}, s_{1}, s_{2}\right\}$, init $=\left\{s_{0}\right\}$, transitions $s_{1} \rightarrow s_{0} \rightarrow s_{2} \rightarrow s_{1}$. Let $A P=\{a, b\}$. Let a label just s_{1} and b label just s_{2}. Do the following formulas hold for P ?
4. $\diamond a \wedge \diamond b$.

Yes.
2. $\diamond(a \wedge b)$.

No.
3. $\diamond a \cup \square \neg(a \wedge b)$.

Yes.
4. $\square \diamond b$.

Yes.
D. Let $A P$ be a set of atomic propositions and φ, ψ be $L T L$ formulas over $A P$. Show the following properties about distributivity, negation propagation, and expansion of temporal connectives:

1. $\bigcirc(\varphi \wedge \psi) \equiv \bigcirc \varphi \wedge \bigcirc \psi$.

We have to show that $\sigma \models \bigcirc(\varphi \wedge \psi)$ if and only if $\sigma \models \bigcirc \varphi \wedge \bigcirc \psi$.
$" \Rightarrow$:
(a) assume $\sigma \models \bigcirc(\varphi \wedge \psi)$. We have $\sigma[0 ..] \vDash \bigcirc(\varphi \wedge \psi)$.
(b) $\sigma[1 ..] \models \varphi \wedge \psi$ by applying the definition of \bigcirc.
(c) $\sigma[1 ..] \models \varphi$ and $\sigma[1 ..] \models \psi$ by eliminating \wedge.
(d) $\sigma \models \bigcirc \varphi$ and $\sigma \models \bigcirc \psi$ by reduction to \bigcirc using its definition.
(e) $\sigma \models \bigcirc \varphi \wedge \bigcirc \psi$ by introducing \wedge.
$" \Leftarrow ":$
(a) Assume $\sigma \models \bigcirc \varphi \wedge \bigcirc \psi$.
(b) We get $\sigma \models \bigcirc \varphi$ and $\sigma \models \bigcirc \psi$ by eliminating \wedge.
(c) By applying definition of \bigcirc, we get $\sigma[1 ..] \models \varphi$ and $\sigma[1 ..] \models \psi$.
(d) We then get $\sigma[1 ..] \models \varphi \wedge \psi$ by introducing \wedge.
(e) $\sigma \models \bigcirc(\varphi \wedge \psi)$ by reducing to \bigcirc using its definition.
2. $\bigcirc(\varphi \mathrm{U} \psi) \equiv \bigcirc \varphi \mathrm{U} \bigcirc \psi$.
3. $\neg \square \varphi \equiv \diamond \neg \varphi$.
4. $\neg(\varphi \mathrm{U} \psi) \equiv \neg \varphi \mathrm{R} \neg \psi$.

We have to show that $\neg(\varphi \mathcal{U} \psi)$ if and only if $(\neg \varphi \mathrm{R} \neg \psi)$.
$" \Rightarrow$ ":
$\varphi \cup \psi$ is defined as $\exists j \geq 0(\sigma[j ..] \vDash \psi \wedge \forall i<j \sigma[i ..] \vDash \varphi)$, and its negation $\neg(\varphi U \psi)$ is $\neg\left(\exists_{j \geq 0}\left(\sigma[j ..] \models \psi \wedge \forall_{i<j} \sigma[i ..] \vDash \varphi\right)\right)$ which is equivalent to $\forall j \geq 0(\sigma[j .] \mid.=\neg \psi \vee \exists i<j \sigma[i ..] \models \neg \varphi)$. But this defines $\neg \varphi \mathrm{R} \neg \psi$.
$" \Leftarrow "$:
This is done by exactly doing the reverse of the " \Rightarrow "proof. We know that $\neg \varphi \mathrm{R} \neg \psi \equiv \neg \neg(\neg \varphi \mathrm{R} \neg \psi)$. By applying the double negation on the definition of $\neg \varphi \mathrm{R} \neg \psi$, we get $\neg \neg\left(\forall_{j \geq 0}\left(\sigma[j ..] \models \neg \psi \vee \exists_{i<j} \sigma[i ..] \models \neg \varphi\right)\right)$ which is equivalent to $\neg\left(\exists_{j \geq 0}\left(\sigma[j ..] \vDash \psi \wedge \forall_{i<j} \sigma[i ..] \models \varphi\right)\right)$. But the one inside the negation defines $\varphi \mathrm{U} \psi$, and hence the whole formula will be $\neg(\varphi \cup \psi)$.
5. $\neg(\varphi \mathrm{W} \psi) \equiv(\varphi \wedge \neg \psi) \cup(\neg \varphi \wedge \neg \psi)$.

We have to show that $\sigma \models \neg(\varphi \mathrm{W} \psi)$ if and only if $\sigma \models(\varphi \wedge \neg \psi) \mathrm{U}(\neg \varphi \wedge \neg \psi)$.
$" \Rightarrow "$:
We have $\diamond \neg \varphi \wedge \neg \varphi \mathrm{R} \neg \psi$. Let $j \geq 0$ be the first state that $\neg \varphi$ holds, i.e. $\sigma[j ..] \vDash \neg \varphi$ and $\forall i<j: \sigma[i ..] \vDash \varphi$. From $\neg \varphi \mathrm{R} \neg \psi$, we have $\square \neg \psi$ or $\neg \psi \mathrm{U}(\neg \varphi \wedge \neg \psi)$.
Case $\square \neg \psi$: then, $\exists j: \sigma[j ..] \vDash \neg \varphi \wedge \neg \psi$ and $\forall i<j: \sigma[i ..] \models \varphi \wedge \neg \psi$. Therefore, $(\varphi \wedge \neg \psi) \cup(\neg \varphi \wedge \neg \psi)$.
Case $\neg \psi \cup(\neg \varphi \wedge \neg \psi)$: then, $\forall i<j: \sigma[i ..] \not \vDash \neg \varphi \wedge \neg \psi$, and hence $\forall i<j: \sigma[i ..] \vDash \neg \psi$ and $\sigma[j ..] \vDash \neg \psi$. Thus, $\exists j: \sigma[j ..] \vDash \neg \varphi \wedge \neg \psi$ and $\forall i<j: \sigma[i ..] \vDash \varphi \wedge \neg \psi$. Therefore, $(\varphi \wedge \neg \psi) \cup(\neg \varphi \wedge \neg \psi)$.
$" \Leftarrow ":$
From $\varphi \mathrm{U}(\neg \varphi \wedge \neg \psi)$, we get $\diamond \neg \varphi$, and from $\psi \mathrm{U}(\neg \varphi \wedge \neg \psi)$, we get $\square \neg \psi \vee \psi \mathrm{U}(\neg \varphi \wedge \neg \psi)$ which implies $\neg \varphi \mathrm{R} \neg \psi$. $\diamond \neg \varphi$ and $\neg \varphi \mathrm{R} \neg \psi$ together imply $\neg(\square \varphi \vee \varphi \mathrm{R} \psi)$, i.e. $\neg(\varphi \mathrm{W} \psi)$.
6. $\neg(\varphi \mathrm{R} \psi) \equiv(\neg \varphi \mathrm{U} \neg \psi)$.
7. $\varphi \cup \psi \equiv \psi \vee(\varphi \wedge \bigcirc(\varphi \cup \psi))$.

We have to show that $\sigma \models \varphi \mathrm{U} \psi$ if and only if $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{U} \psi))$.
$" \Rightarrow ":$
There is $j \geq 0$ such that $\sigma[j ..] \models \psi$ and $\forall_{i<j} \sigma[i ..] \models \varphi$.
Case $\mathbf{j}=\mathbf{0}$: then $\sigma \models \psi$, therefore $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \cup \psi))$.
Case $\mathbf{j}>\mathbf{0}$: then $\sigma[0 ..] \models \varphi$, therefore $\sigma \models \varphi$. Also, $\forall i<j-1: \sigma[i+1 ..] \models \varphi$, i.e. $\forall i<j-1: \sigma[1 .].[i ..] \models \varphi$. In addition, $\sigma[1 .].[j-1 ..] \models \psi$. Thus, $\sigma[1 ..] \models \varphi \mathrm{U} \psi$. Therfore, $\sigma \models \varphi \wedge \bigcirc(\varphi \mathrm{U} \psi)$ which implies that $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{U} \psi))$.
$" \Leftarrow ":$
Case $\sigma \models \psi$: then $\sigma[0 ..] \models \psi$ and there is no i such that $i<0$. Therefore, $\sigma \models \varphi \mathrm{U} \psi$.
Case $\sigma \models \varphi \wedge \bigcirc(\varphi \cup \psi)$: then, $\sigma[1 ..] \vDash \varphi \cup \psi$. There is $j \geq 0$ such that $\sigma[1 .].[j ..] \vDash \psi$ and $\forall i<j: \sigma[1 .].[i ..] \vDash \varphi$. Therefore, $\forall i<j: \sigma[i+1 ..] \vDash \varphi$ and $\sigma[j+1 ..] \models \psi$. Since $\sigma[0 .]=.\sigma \models \varphi$, we have $\forall i<j+1: \sigma[i ..] \vDash \varphi$. Thus, $\sigma \models \varphi \cup \psi$.
8. $\varphi \mathrm{W} \psi \equiv \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{W} \psi))$.

We have to show that $\sigma \models \varphi \mathrm{W} \psi$ if and only if $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{W} \psi))$. We use the definition $\varphi \mathrm{W} \psi \equiv \square \varphi \vee \varphi \mathrm{U} \psi$.
$" \Rightarrow ":$
$\sigma \models \varphi \mathrm{W} \psi$ implies $\sigma \models \square \varphi \vee \varphi \mathrm{U} \psi$, i.e. $\sigma \models \square \varphi$ or $\sigma \models \varphi \mathrm{U} \psi$.
Case $\sigma \models \square \varphi$: then, $\sigma \models \varphi$ and $\sigma[1 ..] \vDash \square \varphi$. Therefore, $\sigma[1 ..] \models \varphi \mathrm{W} \psi$ which is equivalent with $\sigma \models \bigcirc(\varphi \mathrm{W} \psi)$. Thus, $\sigma \models \varphi \wedge \bigcirc(\varphi \mathrm{W} \psi)$.
Case $\sigma \models \varphi \cup \psi$: then, $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \cup \psi))$ as it was proven in (7) above. This implies $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\square \varphi \vee \varphi \cup \psi))$. Thus, $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{W} \psi))$.
$" \Leftarrow "$:
By the definition of W, we have $\sigma \vDash \psi \vee(\varphi \wedge \bigcirc(\square \varphi \vee \varphi \mathrm{U} \psi))$, which can be reduced to $\sigma \vDash \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{U} \psi)) \vee \varphi \wedge \bigcirc \square \varphi$ i.e. $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{U} \psi))$ or $\sigma \models \varphi \wedge \bigcirc \square \varphi$. But, $\sigma \models \psi \vee(\varphi \wedge \bigcirc(\varphi \mathrm{U} \psi))$ implies $\sigma \models \varphi \mathrm{U} \psi$, and hence $\sigma \models \varphi \mathrm{W} \psi$, as it was proven in (7) above. For $\sigma \models \varphi \wedge \bigcirc \square \varphi$, which is equivalent to $\sigma \models \square \varphi$, we have $\sigma \models \square \varphi \vee \varphi \mathrm{U} \psi$ which is equvalent with $\sigma \models \varphi \mathrm{W} \psi$.
E. Let $A P=\{$ green, yellow, red $\}$. Convert the following formulas into positive $L T L$:

1. $\neg(($ yellow U green $) \mathrm{U}$ red $)$.
(\neg yellow $\mathrm{R} \neg$ green) $\mathrm{R} \neg$ red.
2. $\neg($ green $\mathrm{W}($ red \cup green $))$.
$\equiv \neg(\square$ green $\vee($ green $\mathrm{U}($ red U green $)))$
$\diamond \neg$ green $\wedge \neg$ green $\mathrm{R}(\neg$ red $\mathrm{R} \neg$ green $)$.
3. $\neg(($ yellow U green $) \mathrm{R}($ red \cup green $))$.
(\neg yellow $\mathrm{R} \neg$ green) $\mathrm{U}(\neg$ red $\mathrm{R} \neg$ green).
F. (A task with an increased level of difficulty, ${ }^{* *}$.) Show that weak until is "the greatest solution of the expansion law". More formally, show that for all $L T L$ formulas φ, ψ over a set of atomic propositions $A P$,
4. $\operatorname{words}(\varphi \mathrm{W} \psi)$ is a fixpoint of the $\operatorname{map} \lambda S \in \mathfrak{P}\left(\mathbb{N}_{0} \rightarrow \mathfrak{P}(A P)\right)$.words $(\psi) \cup\{\sigma \in \operatorname{words}(\varphi) \mid \sigma[1 ..] \in S\}$.

Let $f(S)=\operatorname{words}(\psi) \cup\{\sigma \in \operatorname{words}(\varphi) \mid \sigma[1 ..] \in S\}$. We will show $\operatorname{words}(\varphi \mathrm{W} \psi)$ is a fixpoint of f; i.e. $f(\operatorname{words}(\varphi \mathrm{~W} \psi))=$ $\operatorname{words}(\varphi \mathrm{W} \psi)$.
$" \subseteq "$
Let $\sigma \in f(\operatorname{words}(\varphi \mathrm{~W} \psi))$.
Case $\sigma \in \operatorname{words}(\psi)$: then, $\sigma \models \psi$. So, $\sigma \models \varphi \mathrm{U} \psi$, and hence $\sigma \models \varphi \mathrm{W} \psi$. Therefore, $\sigma \in \operatorname{words}(\varphi \mathrm{W} \psi)$.
Case $\sigma \in \operatorname{words}(\varphi)$ and $\sigma[1 ..] \in \operatorname{word}(\varphi \mathrm{W} \psi)$: then, $\sigma \models \varphi$, and $(\sigma[1 ..] \vDash \square \varphi$ or $\sigma[1 ..] \models \varphi \mathrm{U} \psi)$.

- sub-case $\sigma[1 ..] \models \square \varphi$: then, $\sigma \models \square \varphi$. Therefore, $\sigma \models \varphi \mathrm{W} \psi$, i.e. $\sigma \in \operatorname{words}(\varphi \mathrm{W} \psi)$.
- sub-case $\sigma[1 ..] \vDash \varphi \cup \psi$: then, there is $j \geq 0$ such that $\sigma[1 .].[j ..] \models \psi$ and $\forall i<j: \sigma[1 .].[i ..] \models \varphi$. This results in $\sigma[j+1 ..] \models \psi$ and $\forall 0<i<j+1: \sigma[i ..] \models \varphi$. Since $\sigma \models \varphi$, we get $\forall i<j+1: \sigma[i ..] \models \varphi$. Thus, $\sigma \models \varphi \mathrm{U} \psi$, and hence, $\sigma \models \varphi \mathrm{W} \psi$, i.e. $\sigma \in \operatorname{words}(\varphi \mathrm{W} \psi)$.
$" \supseteq "$
Let $\sigma \in \operatorname{words}(\varphi \mathrm{W} \psi)$. Then, $\sigma \vDash \square \varphi$ or $\sigma \vDash \varphi \mathrm{U} \psi$.
Case $\sigma \vDash \square \varphi$: then, $\sigma \models \varphi$ and $\sigma[1 ..] \vDash \square \varphi$. Thus $\sigma \in \operatorname{words}(\varphi)$ and $\sigma[1 ..] \in \varphi \mathrm{W} \psi$. Therefore, $\sigma \in f(\varphi \mathrm{~W} \psi)$.
Case $\sigma \models \varphi \mathrm{U} \psi$: then, there is $j \geq 0$ such that $\sigma[j ..] \models \psi$ and $\forall i<j: \sigma[i ..] \models \varphi$.
- sub-case $\mathbf{j}=\mathbf{0}$: then, $\sigma \models \psi$, therefore $\sigma \in \operatorname{words}(\psi) \subseteq f(\operatorname{words}(\varphi \mathrm{~W} \psi))$.
- sub-case $\mathbf{j}>\mathbf{0}$: then, for $k=j-1$ we have ($\sigma[1 .].[k ..] \models \psi$ and $\forall i<k: \sigma[1 .].[i ..] \models \varphi$) which gives $\sigma[1 ..] \models \varphi \mathrm{U} \psi$. Since $\sigma \models \varphi$, we have $\sigma \in\{\hat{\sigma} \in \operatorname{words}(\varphi) \mid \hat{\sigma}[1 ..] \models \varphi \mathrm{W} \psi\}$. Therefore, $\sigma \in f(\varphi \mathrm{~W} \psi)$.

2. and, that it is the greatest of all such fixpoints.

Let $f(S)=S$. We will show that $S \subseteq \operatorname{words}(\varphi \mathrm{~W} \psi)$. Let $\sigma \in S$. Assume for the purpose of contradiction that $\sigma \notin \varphi \mathrm{W} \psi$, i.e. $\sigma \models \neg(\varphi \mathrm{W} \psi)$, i.e. $\sigma \models(\varphi \wedge \neg \psi) \mathrm{U}(\neg \varphi \wedge \neg \psi)$. Then, there is $j \geq 0$ such that $\sigma[j$.. $] \vDash \neg \varphi \wedge \neg \psi$ and forall $i<j$ we have $\sigma[i ..] \models \varphi \wedge \neg \psi$. We will show by backward induction that $\sigma[k ..] \notin S$ for all $k<j$.

- Case $\mathbf{k}=\mathbf{j}: \sigma[j ..] \not \vDash \psi$ and $\sigma[j ..] \not \vDash \varphi$, so $\sigma[j ..] \notin f(S)$, and hence, $\sigma[j ..] \notin S$.
- Case $\mathbf{k}<\mathbf{j}$: Assume by induction hypothesis that $\sigma[k+1 ..] \notin S$. Notice that $\sigma[k ..] \models \neg \psi$, so $\sigma[k ..] \notin w o r d s(\psi)$. In addition, $(\sigma[k .].[1 ..] \notin S)$. Thus, $\sigma[k ..] \notin f(S)=S$.

By induction, $\forall k \leq j: \sigma[k ..] \notin S$. In particular, $\sigma \notin S$.

[^0]: ${ }^{1}$ Not in the homework
 ${ }^{2}$ Not in the homework but important for proving exercise 3

