- I. Higher-order programs. ...
- II. LTL. If the webpage does not display properly in your browser, we have prepared a PDF file for you. Do not be intimidated by the number of tasks: with a single exception, each task is trivial.
 - A. Let AP = {green, yellow, red} and $\sigma = (\{green\} \{green\} \}$ $\{\text{yellow}\} \{\text{red}\} \{\text{red}\} \{\text{yellow,red}\}^{\omega}$. Does σ satisfy the following properties:
 - 1. Ogreen v yellow,
 - 2. \neg green**U**red,
 - 3. \neg (green**U**red)?
 - B. Let $AP = \{green, yellow, red\}$. Write the following properties as LTL formulas (derived operators are allowed):
 - 1. Red and yellow occur together infinitely often.
 - 2. From some time point onward red and green never occur together.
 - 3. Whenever green turns on, green continues for at least two consecutive time units.
 - C. Consider a program P with State= $\{s_0, s_1, s_2\}$, init= $\{s_0\}$, transitions $s_1 \rightarrow s_0 \rightarrow s_2 \rightarrow s_1$. Let AP={*a,b*}. Let *a* label just s_1 and *b* label just s_2 . Which of the following formulas hold for *P*?
 - 1. $\Diamond a \land \Diamond b$,
 - 2. $(a \wedge b)$,
 - 3. $\diamond a \mathbf{U} \Box \neg (a \wedge b)$,
 - 4. □�\$b.
 - D. Let AP be a set of atomic propositions and φ, ψ be LTL formulas over AP. Show the following properties about distributivity, negation propagation, and expansion of temporal connectives:
 - 1. $O(\phi \wedge \psi) \equiv O\phi \wedge O\psi$,
 - 2. $O(\phi \mathbf{U} \psi) \equiv O\phi \mathbf{U} O\psi$,
 - 3. $\neg \Box \omega \equiv \Diamond \neg \omega$.
 - 4. $\neg(\phi \mathbf{U} \psi) \equiv \neg \phi \mathbf{R} \neg \psi$,
 - 5. $\neg(\phi \mathbf{W} \psi) \equiv (\phi \wedge \neg \psi) \mathbf{U}(\neg \phi \wedge \neg \psi)$,
 - 6. $\neg(\phi \mathbf{R} \psi) \equiv \neg \phi \mathbf{U} \neg \psi$,
 - 7. $\phi \mathbf{U} \Psi \equiv \Psi V (\phi \wedge \mathcal{O}(\phi \mathbf{U} \Psi))$,
 - 8. $\phi \mathbf{W} \psi \equiv \psi \vee (\phi \wedge \mathcal{O}(\phi \mathbf{W} \psi))$.
 - E. Let AP={green, yellow, red}. Convert the following formulas into positive LTL:
 - 1. \neg ((vellow**U**green)**U**red),
 - 2. \neg (green**W**(red**U**green)),
 - 3. \neg ((yellow**U**green)**R**(red**U**green)).
 - F. (A task with an increased level of difficulty, **.) Show that weak until is "the greatest solution of the expansion law". More formally, show that for all LTL formulas φ, ψ over a set of atomic propositions AP.
 - Words($\varphi W \psi$) is a fixpoint of the map $\lambda S \in \wp(\mathbb{N}_0 \to \wp(AP))$. Words(ψ) \cup { σ \in Words(ϕ) | σ [1..] \in S}
 - and that it is the greatest of all such fixpoints.