
main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

`1

`2

ρ1

ρ2

`3

ρ3

`4

ρ4

`5

ρ5

(b)

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z))

ρ2 = (move(`2, `2) ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x, y, z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x, y, z))

ρ5 = (move(`3, `5) ∧ x+ 1 ≤ z ∧ skip(x, y, z))

(c)

Fig. 0.1 An example program (a), its control-flow graph (b), and its transition re-
lations (c). Formally, the program is given by Prog = (V, pc, ϕinit ,R, ϕerr) where

V = (pc, x, y, z) is the tuple of program variables, pc is the program counter variable,

R = {ρ1, ρ2, ρ3, ρ4, ρ5} is the set of (“single-statement”) transition relations, ϕinit = at `1
is the initial condition, and ϕerr = at `5 is the error condition. The primed variables are

V ′ = (pc′, x′, y′, z′). We use move and skip as an abbreviation, for example move(`1, `2)

stands for (pc = `1 ∧ pc′ = `2) and skip(x, y, z) represents (x′ = x ∧ y′ = y ∧ z′ = z).

0.1 Preliminaries

In this section, we describe programs, computations, and properties. To see
an example of a program early, go to Figure 0.1.

0.1.1 Programs

A program Prog = (V, pc, ϕinit ,R, ϕerr) consists of

• V - a finite tuple of program variables,
• pc - a program counter variable that is included in V ,
• ϕinit - an initiation condition given by a formula over V ,
• R - a finite set of (“single-statement”) transition relations, where each

transition relation ρ ∈ R is given by a formula over V and their primed
versions V ′,

• ϕerr - an error condition given by a formula over V .

1

Each program variable is assigned a domain of values. A program state is
a function that assigns each program variable a value from its respective
domain. Let Σ be the set of program states. A formula with free variables
in V represents a set of program states. A formula with free variables in
V and V ′ represents a binary relation over program states, where the first
component of each pair assigns values to V and the second component of
the pair assigns values to V ′. We identify formulas with sets and relations
that they represent. Accordingly, we identify the logical consequence relation
between formulas |= with the set inclusion ⊆. Furthermore, we identify the
satisfaction relation between valuations and formulas, which is denoted by |=,
with the membership relation ∈.

Example 1. For example, we consider the program shown in Figure 0.1 that
has program variables V = (pc, x, y, z). The program variables x, y, and z
range over integers. The set of control locations is L = {`1, . . . `5}. A formula
y ≥ z represents the set of program states in which the value of the variable
y is greater than the value of z. Let s be a program state that assigns 1, 3, 2,
and `1 to the program variables x, y, z, and pc, respectively. Then, we have
s |= y ≥ z. Furthermore, we have y ≥ z |= y + 1 ≥ z. �

Each state that satisfies the initiation condition ϕinit is called an initial
state. Each state that satisfies the error condition ϕerr is called an error state.
The program transition relation ρR is the union of the “single-statement”
transition relations, i.e.,

ρR =
∨
ρ∈R

ρ . (0.1)

A pair of states (s, s′) is connected by a program transition if it lies in the
program transition relation ρR, i.e., if (s, s′) |= ρR.

Let L be the domain of the program counter variable pc, i.e., the set of
control locations of the program. To simplify the notation in the examples,
we introduce the following abbreviations, where ` ∈ L is a control location
and v1, . . . , vn are program variables.

at ` = (pc = `)

at ′ ` = (pc′ = `)

move(`, `′) = (at ` ∧ at ′ `)

skip(v1, . . . , vn) = (v′1 = v1 ∧ . . . ∧ v′n = vn)

(0.2)

Example 2. Our example program has an initiation condition ϕinit = (pc =
at `1) and an error condition ϕerr = (pc = at `5). Program transitions
R = {ρ1, ρ2, ρ3, ρ4, ρ5} form a control-flow graph as shown in Figure 0.1(b).
The corresponding transition relations are in Figure 0.1(c). Here, the first
transition relation ρ1 requires that the value of program counter is equal to
`1 and that y ≥ z for the transition to be applicable. After executing the
transition, the program counter value changes to `2 and the values of x, y,

2

and z are not modified. The transition relation of the program consists of the
disjunction ρR = ρ1 ∨ ρ2 ∨ ρ3 ∨ ρ4 ∨ ρ5. �

A program computation is either a finite or an infinite sequence of program
states s1, s2, . . . that satisfies the following three conditions.

• The first element is an initial state, i.e., s1 |= ϕinit .
• Each pair of consecutive states (si, si+1) is connected by a program tran-

sition, i.e., (si, si+1) |= ρR.
• If the sequence is finite then the last element does not have any successors

wrt. the program transition relation ρR, i.e., if the last element is sn, there
is no state s such that (sn, s) |= ρR.

Example 3. In the example program, we consider a program computation
connected by following the sequence of transitions ρ1, ρ2, ρ2, ρ3, ρ4. We rep-
resent states as tuples of values of the program variables pc, x, y, and z,
respectively.

(`1, 1, 3, 2), (`2, 1, 3, 2), (`2, 2, 3, 2), (`2, 3, 3, 2), (`3, 3, 3, 2), (`4, 3, 3, 2)

The last program state does not any successors wrt. the program transition
relation. �

0.1.2 Correctness

We consider only two properties of program computations. These properties
are concerned with the reachability of particular program states and the
finiteness, i.e., termination, of the computation. Checking an expressive class
of temporal properties can be reduced to reasoning about reachability and
termination.

Safety A state is reachable if it occurs in a program computation. A pro-
gram is safe if no error state is reachable.

Let ϕreach denote the set of reachable program states. A program is safe
if and only if no error state lies in ϕreach , i.e.,

ϕerr ∧ ϕreach |= false . (0.3)

Example 4. In our example program, the state (`3, 3, 3, 2) is reachable, as
witnessed by the above computation. The set of reachable program states is

ϕreach = (at `1 ∨
at `2 ∧ y ≥ z ∨
at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `4 ∧ y ≥ z ∧ x ≥ y) .

3

Our program is safe, since ϕreach does not contain any states at the control
location `5. �

Termination A program terminates if every computation is finite. A binary
relation is well-founded if it does not admit any infinite chains. The restriction
of the program transition relation ρR to the reachable program states is given
by ρR ∧ ϕreach (the conjunction of a formula over V and V ′ and a formula
over V). A program terminates if and only if the binary relation ρR ∧ϕreach

is well-founded.

Example 5. For our example, we obtain the following restriction of the pro-
gram transition relation to reachable states.

ρR ∧ ϕreach = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z) ∨
move(`2, `2) ∧ y ≥ z ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z) ∨
move(`2, `3) ∧ y ≥ z ∧ x ≥ y ∧ skip(x, y, z) ∨
move(`3, `4) ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z ∧ skip(x, y, z))

The restriction consists of four disjuncts, since the transition relation ρ5 does
not intersect with ϕreach . Furthermore, the restriction is well-founded, i.e.,
our program terminates. Any attempt to construct an infinite sequence leads
to unbounded increase of the values of the variable x, which contradicts the
condition that x is bounded from above by y whenever the loop execution is
carried on. �

0.1.3 Inductive Safety and Termination Arguments

An inductive invariant ϕ contains the intial states and is closed under succes-
sors. Formally, an inductive invariant is a formula over the program variables
that represents a superset of the initial program states and is closed under
the application of the transition relation ρR, i.e.,

ϕinit |= ϕ and ϕ ∧ ρR |= ϕ[V ′/V]

A program is safe if there exists an inductive invariant ϕ that does not contain
any error states, i.e., ϕ ∧ ϕerr |= false.

Example 6. For our example program, the weakest inductive invariant con-
sists of the set of all states and is represented by the formula true. The
strongest inductive invariant was obtained in Example ?? and is shown be-
low.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ (at `4 ∧ y ≥ z ∧ x ≥ y)

4

The strongest inductive invariant does not contain any error states. We ob-
serve that a slightly weaker inductive invariant below also proves the safety
of our examples.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ at `4

�

The set W is well-founded with respect to certain ordering ≺ if there is
no infinite sequence w1 � w2 � . . . starting from any wi ∈ W . A program
terminates if there exists such (W,≺) and a function r such that:

ϕreach ∧ ρR → r(V) � r(V ′)

5

