
Constraint Solving for Program Verification:
Theory and Practice by Example

Andrey Rybalchenko

Technische Universität München

Abstract. Program verification relies on the construction of auxiliary
assertions describing various aspects of program behaviour, e.g., in-
ductive invariants, resource bounds, and interpolants for characterizing
reachable program states, ranking functions for approximating number of
execution steps until program termination, or recurrence sets for demon-
strating non-termination. Recent advances in the development of con-
straint solving tools offer an unprecedented opportunity for the efficient
automation of this task. This paper presents a series of examples illustrat-
ing algorithms for the automatic construction of such auxiliary assertions
by utilizing constraint solvers as the basic computing machinery.

1 Introduction

Program verification has a long history of using constraint-based algorithms as
main building blocks. In principle, constraint-based algorithms follow two major
steps. First, during the constraint generation step a program property of interest
is formulated as a set of constraints. Any solution to these constraints determines
the property. During the second step, the constraints are solved. Usually, this
step is executed using a separate constraint solving procedure. Such separation
of concerns, i.e., constraint generation vs. solving, can liberate the designer of
the verification tool from the tedious task of creating a dedicated algorithm.
Instead, an existing off-the-shelf constraint solver can be put to work.

In this paper, we show how constraints can be used to prove program
(non-)termination and safety by generating ranking functions, interpolants, in-
variants, resource bounds, and recurrence sets. First, we focus on assertions ex-
pressed in linear arithmetic, which form a practically important class, and then
show extensions with uninterpreted function symbols. Our presentation uses a
collection of examples to illustrate the algorithms.

The rest of the paper is organized as follows. Section 2 illustrates the gener-
ation of linear ranking functions. In Section 3, we show how linear interpolants
can be computed. Section 4 presents linear invariant generation and an opti-
mization technique that exploits program test cases. It also shows how invariant
generation can be adapted to compute bounds on resource consumption. We use
an additional, possibly non-terminating program in Section 5 to illustrate the
construction of recurrence sets for proving non-termination. Section 6 shows how
constraint-based algorithms for the synthesis of linear assertions can be extended

main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

`1

`2

τ1

τ2

`3

τ3

`4

τ4

`5

τ5

(b)

ρ1 = (y ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z)

ρ3 = (x ≥ y ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ4 = (x ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ5 = (x+ 1 ≤ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation ρ2 has a guard x + 1 ≤ y.
Furthermore, the failure of the assert statement is represented by reachability of
the control location `5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.

2

See [6] for its detailed description and pointers to the related work.

while (x < y) {

x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coefficients of
the occurring variables. Let fx and fy be the coefficients for the variables x and
y, respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let δ0 be the lower bound for the value of the
ranking function, and δ by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coefficients
and the bound values.

∃fx ∃fy ∃δ0 ∃δ
∀x ∀y ∀x′ ∀y′ :

(δ ≥ 1 ∧
ρ2 → (fxx+ fyy ≥ δ0 ∧

fxx
′ + fyy

′ ≤ fxx+ fyy − δ))

(1)

Any satisfying assignment to fx, fy, δ0 and δ determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it difficult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form
below.

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y)

= (x− y ≤ −1 ∧ −x+ x′ ≤ 1 ∧ x− x′ ≤ −1 ∧ −y + y′ ≤ 0 ∧ y − y′ ≤ 0)

=


1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1



x
y
x′

y′

 ≤

−1
1
−1
0
0


3

The bound and decrease conditions from (1) produce the following matrix forms.

fxx+ fyy ≥ δ0 =
(
−fx −fy 0 0

)
x
y
x′

y′

 ≤ −δ0
fxx

′ + fyy
′ ≤ fxx+ fyy − δ =

(
−fx −fy fx fy

)
x
y
x′

y′

 ≤ −δ
Now we are ready to eliminate the universal quantification. For this purpose

we apply Farkas’ lemma, which formally states

∃x : Ax ≤ b→ ((∀x : Ax ≤ b→ cx ≤ γ)↔ (∃λ : λ ≥ 0 ∧ λA = c ∧ λb ≤ γ)) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(∀x : ¬(Ax ≤ b))↔ (∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1) .

By applying Farkas’ lemma on (1) we obtain the following constraint.

∃fx ∃fy ∃δ0 ∃δ
∃λ ∃µ :

(δ ≥ 1 ∧
λ ≥ 0 ∧
µ ≥ 0 ∧

λ


1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

 =
(
−fx −fy 0 0

)
∧ λ


−1
1
−1
0
0

 ≤ −δ0 ∧

µ


1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

 =
(
−fx −fy fx fy

)
∧ µ


−1
1
−1
0
0

 ≤ −δ

(2)

This constraint contains only existentially quantified rational variables and con-
sists of linear (in)equalities. Thus, it can be efficiently solved by the existing
tools for Linear Programming over rationals.

4

Solution We apply a linear constraint solver on (2) and obtain the following
solution.

λ = (1 0 0 0 0)

µ = (0 0 1 1 0)

fx = −1

fy = 1

δ0 = 1

δ = 1

This solution states that the expression −x + y decreases during each iteration
of the loop by at least 1, and is greater than 1 for all states that satisfy the loop
guard.

2.2 Algorithm

Now we briefly summarize the above illustration as an algorithm. See [6] for its
detailed description and pointers to the related work.

The ranking function generation algorithm takes as input a transition relation
ρ(v, v′) given by a set of linear inequalities over the program variables and their
primed versions.

ρ(v, v′) = R

(
v
v′

)
≤ r

Then, the condition that a vector of coefficients f for the variables v defines a
linear ranking function is represented by the constraint

∃f ∃δ0 ∃δ ∀v ∀v′ : δ ≥ 1 ∧ ρ(v, v′)→ (fv ≥ δ0 ∧ fv′ ≤ fv − δ) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using off-the-shelf Linear Programming
tools.

∃f ∃δ0 ∃δ
∃λ ∃µ :

δ ≥ 1 ∧
λ ≥ 0 ∧ µ ≥ 0 ∧
λR = (−f 0) ∧ λr ≤ −δ0 ∧
µR = (−f f) ∧ µr ≤ −δ

(4)

3 (Constrained) linear interpolants

Interpolants are logical assertions over program states that can separate program
states that satisfy a desired property from the ones that violate the property.
Interpolants play an important role in automated abstraction of sets of program
states and their automatic construction is a crucial building block for program

5

verification tools. In this section we present an algorithm for the computation of
linear interpolants. A unique feature of our algorithm is the possibility to bias
the outcome using additional constraints.

3.1 Example

In program verification, interpolants are computed for formulas that are ex-
tracted from program paths, i.e., sequences of program statements that follow
the control flow graph of the program. We illustrate the interpolant computation
algorithm using a program path from Figure 1, and refer to [8] for a detailed
description of the algorithm and a discussion of the related work.

Input We consider a path τ1τ3τ5, which corresponds to an execution of the pro-
gram that does not enter the loop and fails the assert statement. This path does
not modify the values of the program variables, but rather imposes a sequence
of conditions y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z. Since this sequence is not satisfiable, a
program verifier can issue an interpolation query that needs to compute a sep-
aration between the states that the program reaches after taking the transition
τ3 and the states that violate the assertion. Formally, we are interested in an
inequality ixx+ iyy + izz ≤ i0, called an interpolant, such that

∃ix ∃iy ∃iz ∃i0
∀x ∀y ∀z :

((y ≥ z ∧ x ≥ y)→ ixx+ iyy + izz ≤ i0) ∧
((ixx+ iyy + izz ≤ i0 ∧ x+ 1 ≤ z)→ 0 ≤ −1)

(5)

Furthermore, we require that ixx + iyy + izz ≤ i0 only refers to the variables
that appear both in y ≥ z ∧ x ≥ y and x + 1 ≤ z, which are x and z. Hence,
iz needs to be equal to 0, which is ensured by the above constraint without any
additional effort.

Constraints First we represent the sequence of conditions in matrix form as
follows.

(y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z) =

(−y + z ≤ 0 ∧ −x+ y ≤ 0 ∧ x− z ≤ −1) = 0 −1 1
−1 1 0
1 0 −1

xy
z

 ≤
 0

0
−1


6

Since (5) contains universal quantification, we apply Farkas’ to enable applica-
bility of Linear Programming tools and obtain the following constraint.

∃ix ∃iy ∃iz ∃i0
∃λ ∃µ :

λ ≥ 0 ∧ µ ≥ 0 ∧

(λ µ)

 0 −1 1
−1 1 0
1 0 −1

 = 0 ∧ (λ µ)

 0
0
−1

 ≤ −1 ∧

(ix iy iz) = λ

(
0 −1 1
−1 1 0

)
∧ i0 = λ

(
0
0

)
(6)

This constraint uses two vectors λ and µ to represent the linear combination
that derives the unsatisfiable inequality 0 ≤ −1. The vector λ tracks the first
two inequalities, and µ tracks the third inequality.

Solution By solving (6) we obtain

λ = (1 1),

µ = 1 ,

ix = −1 ,

iy = 0 ,

iz = 1 ,

i0 = 0 .

The resulting interpolant is −x+ z ≤ 0.

3.2 Algorithm

The above example illustrate a constraint-based interpolation algorithm pro-
posed in [8]. We refer to [8] for its detailed description and pointers to the
related work, while the presentation below briefly sketches a simplified version.

Our interpolation algorithm takes as input two sets of linear inequalities,
Av ≤ a and Bv ≤ b, that are mutually unsatisfiable and computes an interpo-
lating inequality iv ≤ i0, which satisfies the following constraint.

∃i ∃i0
∀v :

(Av ≤ a→ iv ≤ i0) ∧
((iv ≤ i0 ∧Bv ≤ b)→ 0 ≤ −1)

(7)

7

The above formulation yields an existentially quantified linear constraint by
applying Farkas’ lemma. As a result we obtain

∃i ∃i0
∃λ ∃µ :

λ ≥ 0 ∧ µ ≥ 0 ∧(
λ µ
)(A

B

)
= 0 ∧

(
λ µ
)(a

b

)
≤ −1 ∧

i = λA ∧ i0 = λa .

(8)

3.3 Constrained interpolants

The constraint-based approach to interpolant computation offers a unique op-
portunity to bias the resulting interpolant using additional constraints. That is,
(6) can be extended with an additional constraint C(i

i0) ≤ c that encode the
bias condition.

4 Linear invariants

Invariants are assertions over program variables whose value does not change dur-
ing program execution. In program verification invariants are used to describe
sets of reachable program states, and are an indispensable tool for reasoning
about program correctness. In this section, we show how invariants proving the
non-reachability of the error location in the program can be computed by using
constraint-based techniques, and present a testing-based approach for simpli-
fying the resulting constraint generation task. Furthermore, we briefly present
a close connection between invariant and bound generation. See [5, 3] for the
corresponding algorithms and further details.

4.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location `5, which
serves as the error location.

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ≤ p0 and qxx + qyy + qzz ≤ q0 for the locations `2 and `3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location `5. We encode the conditions (1–3) on the unknown invariant coefficients

8

as the following constraint.

∃px ∃py ∃pz ∃p0 ∃qx ∃qy ∃qz ∃q0
∀x ∀y ∀z ∀x′ ∀y′ ∀z′ :

(ρ1 → pxx
′ + pyy

′ + pzz
′ ≤ p0) ∧

((pxx+ pyy + pzz ≤ p0 ∧ ρ2)→ pxx
′ + pyy

′ + pzz
′ ≤ p0) ∧

((pxx+ pyy + pzz ≤ p0 ∧ ρ3)→ qxx
′ + qyy

′ + qzz
′ ≤ q0) ∧

((qxx+ qyy + qzz ≤ p0 ∧ ρ4)→ 0 ≤ 0) ∧
((qxx+ qyy + qzz ≤ p0 ∧ ρ5)→ 0 ≤ −1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying τ1 on any state leads to a state represented by pxx+pyy+
pzz ≤ p0.

Constraints We represent each transition relation ρ1, . . . , ρ5 in matrix form
as R1 (vv′) ≤ r1, . . . , R5 (vv′) ≤ r5, respectively, where v is the vector of pro-
gram variables x, y, z and v′ is its primed version. Since (9) contains universal
quantification, we resort to the Farkas’ lemma-based elimination, which yields
the following constraint.

∃px ∃py ∃pz ∃p0 ∃qx ∃qy ∃qz ∃q0
∃λ1 ∃λ2 ∃λ3 ∃λ4 ∃λ5 :

λ1 ≥ 0 ∧ · · · ∧ λ5 ≥ 0 ∧
λ1R1 = (0 px py pz) ∧ λ1r1 ≤ p0 ∧

λ2

(
px py pz 0

R2

)
= (0 px py pz) ∧ λ2

(
p0
r2

)
≤ p0 ∧

λ3

(
px py pz 0

R3

)
= (0 qx qy qz) ∧ λ3

(
p0
r3

)
≤ q0 ∧

λ4

(
qx qy qz 0

R4

)
= 0 ∧ λ4

(
q0
r4

)
≤ 0 ∧

λ5

(
qx qy qz 0

R5

)
= 0 ∧ λ5

(
q0
r5

)
≤ −1

(10)

Unfortunately, this constraint is non-linear since it contains multiplication
between unknown components of λ1, . . . , λ5 and the unknown coefficients
px, py, pz, p0, qx, qy, qz, q0.

Solution In contrast to interpolation or ranking function generation, we cannot
directly apply Linear Programming tools to solve (10) and need to introduce
additional solving steps, as described in Section 4.3 and [5]. These steps lead
to the significant reduction of the number of non-linear terms, and make the

9

constraints amenable to solving using case analysis on the remaining unknown
coefficients for derivations.

For our program we obtain the following solution.

λ1 = (1 1 1 1)

λ2 = (1 0 1 1 1)

λ3 = (1 1 1 1 1)

λ4 = (0 0 0 0 0)

λ5 = (1 1 0 0 0)

px = 0 py = −1 pz = 1 p0 = 0

qx = −1 qy = 0 qz = 1 q0 = 0

This solution defines an invariant −y+ x ≤ 0 at the location `2 and −x+ z ≤ 0
at the location `3.

4.2 Algorithm

Next, we sketch the constraint-based invariant algorithm. See [2, 1, 5] for further
details and a discussion of related work.

Input The algorithm takes as the first input a program P = (v, pc,L, T , `I , `E)
consists of data variables v, a program counter variable pc, a finite set of control
locations L, a finite set of transitions T , a start location `I ∈ L, and an error
location `E ∈ L. Each transition (`, ρ(v, v′), `′) ∈ T consists of a start location
`, a transition relation ρ(v, v′), and destination location `′ ∈ L.

As the second input, the algorithm takes a template map that assigns to each
control location ` a set of linear inequalities over program variables I`v ≤ i` with
unknown coefficients I` and i`. The goal of the algorithm is to find a valuation
of these coefficients such that the following constraint holds.

∃I`∈L ∃i`∈L

∀v ∀v′ :

(I`I = 0 ∧ i`I = 0) ∧ (I`E = 0 ∧ i`E = −1) ∧
(∀(`, ρ(v, v′), `′) ∈ T :

(I`v ≤ i` ∧ ρ(v, v′))→ I`′v
′ ≤ i`′)

(11)

First this constraint ensures that there is no restriction on the start state of the
programs imposed by the template I`Iv ≤ i`I at the start location `I . Then,
the constraint requires that no execution reaches the error location, i.e., the
corresponding template I`Ev ≤ i`E yields an unsatisfiable set of inequalities. For
each program transition the constraint requires that set of states reachable by
taking this transition is captured by the respective sets of inequalities.

10

Constraints Since the constraint (11) contains universal quantification, we
apply Farkas’ lemma and obtain

∃I`∈L ∃i`∈L

∃Λτ∈T :

(I`I = 0 ∧ i`I = 0) ∧ (I`E = 0 ∧ i`E = −1) ∧
(∀τ = (`, R(vv′) ≤ r, `′) ∈ T :

Λτ ≥ 0 ∧

Λτ

(
I` 0
R

)
= I`′ ∧ Λτ

(
i`
r

)
≤ i`′)

(12)

We observe that the multiplication between Λ` on once side with I` and i` leads
to non-linearity. In theory, the non-linear constraint (10) can be solved by quanti-
fier elimination procedures over rationals/reals, however in practice constraints
quickly become too difficult for such direct approach. Various techniques are
known to simplify constraints before solving by reducing the amount of non-
linear terms. Next we present a recent technique that exploits program tests for
this task.

4.3 Static and dynamic constraint simplification

Example Now we show how program test cases can be used to obtain additional
constraint simplification when computing invariants.

We use the program in Figure 1 and consider a sequence of program states
below, which can be recorded during a test run of the program.

s1 = (`1, x = 1, y = 2, z = 1)

s2 = (`2, x = 1, y = 2, z = 1)

s3 = (`2, x = 2, y = 2, z = 1)

s4 = (`3, x = 2, y = 2, z = 1)

s5 = (`4, x = 2, y = 2, z = 1)

These states are reachable, hence any program invariant holds for these states.
Next, we perform a partial evaluation of the invariant templates at locations `2
and `3 on states s2, s3, and s4, respectively:

ϕ1 = (px1 + py2 + pz1 ≤ p0)

ϕ2 = (px2 + py2 + pz1 ≤ p0)

ϕ3 = (qx2 + qy2 + qz1 ≤ q0)

The obtained constraints are linear and they must hold for any template instan-
tiation. Hence, their conjunction ϕ1 ∧ ϕ2 ∧ ϕ3, i.e.,

px + 2py + pz ≤ p0 ∧ 2px + 2py + pz ≤ p0 ∧ 2qx + 2qy + qz ≤ q0 ,

11

can be added to (10) as an additional strengthening without changing the set
of solutions. Practically, however, this strengthening results in a series of sim-
plifications of the non-linear parts of (10), which can dramatically increase the
constraint solving efficiency.

Algorithm Let S be a finite set of reachable program states. Then, the following
additional constraint can be conjoined with (12) without changing its set of
solutions. ∧

s∈S
(Is(pc)v ≤ is(pc))[s(v)/v]

4.4 Bound generation as unknown assertion

Program execution can consume various resources, e.g., memory or running time.
For our example program in Figure 1, the number of loop iterations might be such
a resource since it correlates with the program execution time. Resource bounds
are logical assertions that provide an estimate on the resource consumption,
and their automatic generation is an important task, esp. for program execution
environments with limited resource availability.

There is a close connection between expressions describing resource bounds
and program assertions specifying conditions on reachable program states. We
can encode the check if a given bound holds for all program execution as a pro-
gram assertion over auxiliary program variables that keep track of the resource
consumption. In our example the assertion statement ensures that the elapse of
the running time, as tracked by the variable x, is bounded from below by the
value of the variable z.

Unknown resource bounds can be synthesized using our constraint-based in-
variant generation algorithm described above after a minor modification of the
employed constraint encoding. Next we show how to modify our constraints (9)
and (10) to identify a bound on the number of loop iterations, under the assump-
tion that the assertion statement, as represented by the transition relations ρ4
and ρ5, is excluded from the program.

First, we assume that the unknown bound assertion is represented by an
inequality

x ≤ byy + bzz + b0 .

Now, our goal is to identify the values of the coefficients by, bz, and b0 together
with an invariant that proves the validity of the bound.

We encode our goal as a constraint by replacing the last two conjuncts in
(9), which were present due to the assertion statement, with the following im-
plication.

qxx+ qyy + qzz ≤ q0 → x ≤ byy + bzz + b0

This implication requires that the program invariant at the location after the
loop exit implies the bound validity.

12

After eliminating universal quantification from the modified constraint and
a subsequent solving attempt we realize that no bound on x can be found. If we
consider a modified program that includes an assume statement

assume(z>=x);

as its first instruction and reflect the modification in the constraints, then we
will be able to compute the following bound.

x ≤ y

5 Recurrence sets

Inherent limitations of the existing tools for proving program termination can
lead to cases when non-conclusive results are reported. Since a failure to find
a termination argument does not directly imply that the program does not
terminate on certain inputs, we need dedicated methods that can prove non-
termination of programs. In this section we present such a method. It is based
on the notion of recurrence set that serves as a proof for the existence of a
non-terminating program execution.

Input We show how non-termination can be proved by constructing recurrence
sets using the example in Figure 2. Here, we assume that the program variables
range over integer numbers, i.e., no overflow can take place. The complete version
of the corresponding algorithm is presented in [4] and handles programs over
integers as bit-strings as well.

To prove non-termination we will compute a recurrence set consisting of pro-
gram states that can be reached at the loop entry and lead to an additional
loop iteration. We assume that a desired recurrence set can be expressed by a
conjunction of two inequalities pv ≤ p0 ∧ qv ≤ q0 over the vector of program
variables v consisting of x, y, and z, while p, p0, q, and q0 are unknown coef-
ficients. To simplify notation, we write Sv ≤ s for the conjunction of pv ≤ p0
and qv ≤ q0. Then, the following constraint encodes the recurrence set condition.

∃S ∃s :

(∃v ∃v′ : ρ1(v, v′) ∧ Sv′ ≤ s) ∧
(∀v ∃v′ : Sv ≤ s→ (ρ2(v, v′) ∧ Sv′ ≤ s))

(13)

The first conjunct guarantees that the recurrence set is not empty and requires
that the recurrence set contains at least one state that is reachable by following
the transition τ1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition τ2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

13

main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x=x+1+z;

}

}

(a)

`1

`2

τ1

τ2

`3

τ3

(b)

ρ1 = (y ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 + z ∧ y′ = y ∧ z′ = z)

ρ3 = (x ≥ y ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(c)

Fig. 2. A non-terminating example program (a), its control-flow graph (b), and the
corresponding transition relations (c).

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it difficult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ρ1 and ρ2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

∃S ∃s :

(∃x ∃y ∃z : y ≥ z ∧ S
(
x
y
z

)
≤ s) ∧

(∀x ∀y ∀z : S
(
x
y
z

)
≤ s→ (x+ 1 ≤ y ∧ S

(
x+1+z
y
z

)
≤ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx, Sy, and Sz to refer to the first, second, and the third column
of S, respectively.

∃S ∃s :

(∃x ∃y ∃z : y ≥ z ∧ S
(
x
y
z

)
≤ s) ∧

(∃λ : λ ≥ 0 ∧ λS =
(
1 −1 0

)
∧ λs ≤ −1) ∧

(∃Λ : Λ ≥ 0 ∧ ΛS =
(
Sx Sy Sz + Sx

)
∧ Λs ≤ (s− Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

14

solution.

x = −2

y = −1

z = −1

λ = (1 0)

Λ =

(
1 0
1 1

)
p = (1 − 1 0)

p0 = −1

q = (0 0 1)

q0 = −1

This solution defines the recurrence set

x− y ≤ −1 ∧ z ≤ −1 ,

and states that the program does not terminate if executed from an initial state
that assigns x = −2, y = −1, and z = −1.

6 Combination with uninterpreted functions

In the previous sections we showed how auxiliary assertions represented by linear
inequalities can be generated using constraint-based techniques. In this section
we show that these techniques can be directly extended to deal with assertions
represented by linear arithmetic combined with uninterpreted functions. This
combined theory plays in important role in program verification, where unin-
terpreted functions are used to abstract functions that are too complex to be
modeled precisely. The basis of the extension is the hierarchical approach to
the combination of logical theories [7]. We refer to [8, 1] for constraint-based
interpolation and invariant generation algorithms for the combination of linear
arithmetic and uninterpreted functions. Next, we will illustrate the interpolation
algorithm for linear arithmetic and function symbols using a small example.

Input The interpolation algorithm takes as input a pair of mutually unsatisfi-
able assertions ϕ and ψ shown below.

ϕ = (x ≤ a ∧ a ≤ y ∧ f(a) ≤ 0)

ψ = (y ≤ b ∧ b ≤ x ∧ 1 ≤ f(b))

The proof of unsatisfiability requires reasoning about linear arithmetic and
uninterpreted function, which we represent by the logical consequence rela-
tion |=LI+UIF.

ϕ ∧ ψ |=LI+UIF ⊥

15

The goal of the interpolation algorithm is to construct an assertion χ such
that

ϕ |=LI+UIF χ ,

χ ∧ ψ |=LI+UIF ⊥ ,

χ is expressed over common symbols of ϕ and ψ .

(15)

Constraints and solution As common in reasoning about combined theories,
we first apply a purification step that separates arithmetic constraints from the
function applications as follows.

ϕLI = (x ≤ a ∧ a ≤ y ∧ c ≤ 0)

ψLI = (y ≤ b ∧ b ≤ x ∧ 1 ≤ d)

D = {c 7→ f(a), d 7→ f(b)}
X = {a = b→ c = d}

The sets of inequalities ϕLI and ψLI do not have any function symbols, which
were replaced by fresh variables. The mapping between these fresh variables
and the corresponding function applications is given by the set D. The set X
contains functionality axiom instances that we create for all pairs of occurrences
of function applications. These instances are expressed in linear arithmetic. For
our example there is only one such instance.

The hierarchical reasoning approach guarantees that instances collected in
X are sufficient for proving the mutual unsatisfiability of the pure assertions ϕLI

and ψLI, i.e.,

ϕLI ∧ ψLI ∧
∧
X |=LI ⊥

Unfortunately we cannot apply an algorithm for interpolation in linear arith-
metic on the unsatisfiable conjunction presented above since the axiom instance
in X contains variables that appear both in ϕLI and ψLI, which will lead to an
interpolation result that violates the third condition in 15.

Instead, we resort to a case-based reasoning as follows. First, we attempt to
compute an interpolant by considering the pure assertions, but do not succeed
since they are mutually satisfiable, i.e.,

ϕLI ∧ ψLI 6|=LI ⊥

Nevertheless, the conjunction of pure assertions implies the precondition for
applying the functionality axiom instance from X, i.e.,

ϕLI ∧ ψLI |=LI a = b

From this implication follows that we can compute intermediate terms that are
represented over variables that are common to ϕLI and ψLI. Formally, we have

ϕLI ∧ ψLI |=LI a ≤ y ∧ y ≤ b ,
ϕLI ∧ ψLI |=LI a ≥ x ∧ x ≥ b .

16

We rearrange these implications and obtain the following implications.

ϕLI |=LI x ≤ a ∧ a ≤ y
ψLI |=LI y ≤ b ∧ b ≤ x

These implications are used by our interpolation algorithm to derive appropriate
case reasoning, which will be presented later on. Furthermore, our algorithm
creates an additional function application f(y) together with a corresponding
fresh variable e, which is used for the purification and is recorded in the set D.

D = {c 7→ f(a), d 7→ f(b), e 7→ f(y)}

The first step of the case reasoning requires computing an interpolant for the
following unsatisfiable conjunction.

(ϕLI ∧ a = e) ∧ (ψLI ∧ e = b) |=LI ⊥

By applying the algorithm presented in Section 3 we obtain a partial interpolant
e ≤ 0 such that

ϕLI ∧ a = e |=LI e ≤ 0 ,

e ≤ 0 ∧ ψLI ∧ e = b |=LI ⊥ .

The partial interpolant is completed using the case reasoning information as
follows.

χLI = (x 6= y ∨ (x = y ∧ e ≤ 0))

After replacing the fresh variables by the corresponding function applications
we obtain the following interpolant χ for the original input ϕ and ψ.

χ = (x 6= y ∨ (x = y ∧ e ≤ 0))[f(q)/e]

= x 6= y ∨ (x = y ∧ f(q) ≤ 0)

7 Conclusion

We presented a collection of examples demonstrating that several kinds of auxil-
iary assertions that play a crucial role in program verification can be effectively
synthesized using constraint-based techniques.

Acknowledgment I thank Byron Cook, Fritz Eisenbrand, Ashutosh Gupta,
Tom Henzinger, Rupak Majumdar, Andreas Podelski, and Viorica Sofronie-
Stokkermans for unconstrained satisfactory discussions.

References

1. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis
for combined theories. In VMCAI, 2007.

17

2. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV, 2003.

3. B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa, S. Singh, and V. Vafeiadis.
Finding heap-bounds for hardware synthesis. In FMCAD, 2009.

4. A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving
non-termination. In POPL, 2008.

5. A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In TACAS,
2009.

6. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, 2004.

7. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In CADE,
2005.

8. V. Sofronie-Stokkermans and A. Rybalchenko. Constraint solving for interpolation.
J. of Symbolic Computation, 2010. to appear.

18

