
Lecture 1: Reachability Algorithm And Its

Correctness

Model Checking (IN2050) Summer 2011

Andrey Rybalchenko

May 4, 2011

Abstract

We present a basic algorithm that computes the set of nodes reachable
in a (finite) graph. For this algorithm we formulate the corresponding
correctness properties and present their proofs.

1 Reachability algorithm

Figure 1 presents an algorithm BRA that computes graph nodes that are reach-
able from the start node by traversing the graph edges.

2 Properties and proofs

2.1 Termination

Theorem 1. BRA terminates on finite graphs.

Proof. Ordering

We define an ordering on pairs of integer numbers as follows.

(a, b) > (a′, b′) : a > a′ ∨ a = a′ ∧ b > b′

Then (a, b) ≥ (a′, b′) if either (a, b) = (a′, b′) or (a, b) > (a′, b′).

Ranking function

Given a finite set X, let |X| be its size. Next, we define a ranking function r
from the values of C and done to pairs of integer numbers as follows, which is
possible since both N and C are finite.

r(C, done) : (|N| − |C|, if done then 0 else 1)

1

algorithm BRA

input

N : set of nodes

n0 : start node, where n0 \in N

E : set of edges, where E \subseteq N \times N

var

C : nodes reached so far

done : Boolean flag

D : auxiliary set of nodes

begin

C := {n0}

done := false

while \neg done do

D := { d \in N | \exists c \in C: (c, d) \in E }

if \neg (D \subseteq C) then

C := C \cup D

else

done := true

od

return C

end.

Figure 1: A basic algorithm BRA for computing reachable nodes in a (finite)
graph.

For example, for N = {1, 2, 3} we have

r({1}, false) = (2, 1) ,
r({1, 2}, false) = (1, 1) ,
r({1, 2, 3}, true) = (0, 0) .

Ranking decrease

Now we show that the value of the ranking function decreases during each loop
iteration.

First, we consider the path through the loop that traverses the if branch of
the conditional statement. The corresponding proof obligation is

r(C, false) > r(C ∪ D, false) ,

under the assumption that ¬(D ⊆ C). This assumption implies that there exists
a node d ∈ D such that d 6∈ C. Hence, |C| < |C∪ D|. which proves the obligation.

Second, we consider the path that traverses the else branch. Since the set C
does not change, we immediately obtain

r(C, false) > r(C, true) .

2

Ranking bound

We prove that an iteration of the loop can only take place if the algorithm state
satisfies the following condition.

r(C, done) ≥ (0, 0)

This statement follows from the fact that the algorithm maintains the relation
C ⊆ N and the loop condition.

Putting everything together

First, we observe that there is no infinite chain of pairs of integers (a0, b0) >
(a1, b1) > . . . such that for each i ≥ 0 we have (ai, bi) ≥ (0, 0). Together with
the ranking decrease and ranking bound statements this observation implies
termination of the algorithm.

2.2 Reachability

Theorem 2. Each node c in the set C computed by BRA is reachable from n0

by following edges from E. Formally,

∀c ∈ C : (n0, c) ∈ E∗ .

Proof. We prove the theorem by induction on the number of the loop itera-
tions k. Our induction hypothesis Hyp(k) is:

Each node c that was added to C at the iteration k′ such that k′ ≤ k
is reachable, i.e., (n0, c) ∈ E∗.

Base case

For k = 0, we have C = {n0}. Since (n0, n0) ∈ E∗, Hyp(0) holds.

Step

We assume that for k the induction hypothesis Hyp(k) holds, i.e., each node c

added to C at the iteration k′ such that k′ ≤ k is reachable, i.e., (n0, c) ∈ E∗.
We prove Hyp(k + 1), which amounts to proving that D computed during the
k + 1th interaction by following the if branch is reachable. The case when the
k + 1th iteration goes through the else branch does not modify C and hence
Hyp(k + 1) holds.

By the induction hypothesis, for each d ∈ D there exists c ∈ C at step k such
that (c, d) ∈ E and c is reachable, i.e., (n0, c) ∈ E∗. The induction step follows
immediately.

3

A Notation

English math ASCII example

element of ∈ \in 1 ∈ {1, 2, 3}
subset of ⊆ \subseteq {1, 2} ⊆ {1, 2, 3}
union of ∪ \cup {1, 2} ∪ {2, 3} = {1, 2, 3}
intersection of ∩ \cap {1, 2} ∩ {2, 3} = {2}
subtraction of \ \setminus {1, 2} \ {2, 3} = {1}
Cartesian product × \times {1, 2} × {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}
exists ∃ \exists

forall ∀ \forall

negation ¬ \lneg

conjunction ∧ \land

disjunction ∨ \lor

Table 1: Mathematical symbols in ASCII.

4

