Model Checking, SS2011: Exercise Sheet 14

July 5, 2011

Exercise 14.1. In this exercise we consider a variant LTL' of the logic LTL presented in class. Let

- 1. Σ be a set of atomic propositions denoted by p,
- 2. Formulas be the set of LTL formulas,
- 3. $V: \mathbb{N} \to 2^{\Sigma}$ be a valuation of atomic propositions,
- 4. $\models \subseteq (\mathbb{N} \to 2^{\Sigma}) \times \mathbb{N} \times Formulas$ be the *LTL*' satisfaction relation defined like the satisfaction relation for LTL except for the following case.

$$(V,i) \models p \text{ iff } p \in V(i)$$

Consider the following Prolog facts.

```
v(1, [0-[p1], 1-[p1,p2,p3], 2-[p1], 3-[p2]]).
v(2, [0-[p1,p2], 1-[p2,p3], 2-[p2], 3-[p2]]).
v(3, [0-[p1,p2], 1-[p2,p3], 2-[p2,p3], 3-[p2]]).
```

A fact v(Id, V) contains the user defined valuation $V : \mathbb{N} \to 2^{\Sigma}$ number Id. Define a Prolog procedure s/3 such that s(V, I, F) succeeds if F is a formula with no occurrences of the \mathcal{U}, \Box or \diamond modal operators, and $(V, I) \models F$. Give your answer by completing the following clauses.

s(V, I, P) :s(V, I, F/\G) :s(V, I, not(F)) :s(V, I, next(F)) :s(V, I, F\/G) :s(V, I, F>>G) :-

Exercise 14.2. Consider the following alphabet $\Sigma = \{a, b, c\}$. For each of the following properties on words over Σ construct a corresponding monitor and ω -regular expression.

1. The word α has at least one letter c.

- 2. In the word α every letter *a* is immediately followed by letter *b*.
- 3. In the word α there are at least two b's in between two successive a's.
- 4. In α , has a suffix of *a*'s.
- 5. In α , b occurs infinitely many often.
- 6. In α , b always eventually follows a.
- 7. In α , there are finitely many occurrences of a.

Exercise 14.3. Consider the following set of LTL' atomic propositions $\Sigma = \{a, b, c\}$. For each of the following properties on valuations LTL' give an LTL' formula satisfied by correct valuations. Formally, for each property P(V) over a valuation variable V, give a formula ϕ such that $\forall V. P(V) \rightarrow ((V, 0) \models \phi)$.

- 1. The valuation V assigns true to c at least once.
- 2. In the valuation V proposition a is immediately followed by proposition b.
- 3. In valuation V there are at least two b's in between two successive a's.
- 4. In V eventually a always holds.
- 5. In V, b holds infinitely many often.
- 6. In V, b always eventually follows $a \wedge c$.
- 7. In V, a is true finitely many times.

Exercise 14.4. Go to http://buchi.im.ntu.edu.tw/ and look for Büchi automata corresponding to the answers you gave for Exercise 14.3.

Exercise 14.5. Let $A(\phi)$ be the set of propositions occurring in LTL formula ϕ .

- 1. Give a set of defining equations for $A(\phi)$.
- 2. Let V be an *LTL'* valuation and ϕ an LTL formula. Let V' be the restriction of V to the propositions occurring in ϕ , i.e. let V' be such that $\forall i \in \mathbb{N} . V'(i) = V(i) \cap A(\phi)$. Prove that

$$\forall i \in \mathbb{N} . ((V,i) \models \phi \text{ iff } (V',i) \models \phi)$$