Model Checking, SS2011: Exercise Sheet 14

July 5, 2011

Exercise 14.1. In this exercise we consider a variant $L T L^{\prime}$ of the logic LTL presented in class. Let

1. Σ be a set of atomic propositions denoted by p,
2. Formulas be the set of LTL formulas,
3. $V: \mathbb{N} \rightarrow 2^{\Sigma}$ be a valuation of atomic propositions,
4. $\vDash \subseteq\left(\mathbb{N} \rightarrow 2^{\Sigma}\right) \times \mathbb{N} \times$ Formulas be the LTL ${ }^{\prime}$ satisfaction relation defined like the satisfaction relation for LTL except for the following case.

$$
(V, i) \models p \text { iff } p \in V(i)
$$

Consider the following Prolog facts.
$\mathrm{v}(1,[0-[p 1], 1-[p 1, p 2, p 3], 2-[p 1], 3-[p 2]])$.
$\mathrm{v}(2,[0-[\mathrm{p} 1, \mathrm{p} 2], 1-[\mathrm{p} 2, \mathrm{p} 3], 2-[\mathrm{p} 2], 3-[\mathrm{p} 2]])$.
$\mathrm{v}(3,[0-[\mathrm{p} 1, \mathrm{p} 2], 1-[\mathrm{p} 2, \mathrm{p} 3], 2-[\mathrm{p} 2, \mathrm{p} 3], 3-[\mathrm{p} 2]])$.
A fact $\mathrm{v}(\mathrm{Id}, \mathrm{V})$ contains the user defined valuation $\mathrm{V}: \mathbb{N} \rightarrow 2^{\Sigma}$ number Id. Define a Prolog procedure $s / 3$ such that $\mathrm{s}(\mathrm{V}, \mathrm{I}, \mathrm{F})$ succeeds if F is a formula with no occurrences of the \mathcal{U},or \diamond modal operators, and (V, I) $\models \mathrm{F}$. Give your answer by completing the following clauses.

```
s(V, I, P) :-
s(V, I, F/\G) :-
s(V, I, not(F)) :-
s(V, I, next(F)) :-
s(V, I, F\/G) :-
s(V, I, F>>G) :-
```

Exercise 14.2. Consider the following alphabet $\Sigma=\{a, b, c\}$. For each of the following properties on words over Σ construct a corresponding monitor and ω-regular expression.

1. The word α has at least one letter c.
2. In the word α every letter a is immediately followed by letter b.
3. In the word α there are at least two b 's in between two successive a 's.
4. In α, has a suffix of a 's.
5. In α, b occurs infinitely many often.
6. In α, b always eventually follows a.
7. In α, there are finitely many occurrences of a.

Exercise 14.3. Consider the following set of $L T L^{\prime}$ atomic propositions $\Sigma=$ $\{a, b, c\}$. For each of the following properties on valuations $L T L^{\prime}$ give an $L T L^{\prime}$ formula satisfied by correct valuations. Formally, for each property $P(V)$ over a valuation variable V, give a formula ϕ such that $\forall V . P(V) \rightarrow((V, 0) \models \phi)$.

1. The valuation V assigns true to c at least once.
2. In the valuation V proposition a is immediately followed by proposition b.
3. In valuation V there are at least two b 's in between two successive a 's.
4. In V eventually a always holds.
5. In V, b holds infinitely many often.
6. In V, b always eventually follows $a \wedge c$.
7. In V, a is true finitely many times.

Exercise 14.4. Go to http://buchi.im.ntu.edu.tw/ and look for Büchi automata corresponding to the answers you gave for Exercise 14.3.

Exercise 14.5. Let $A(\phi)$ be the set of propositions occurring in LTL formula ϕ.

1. Give a set of defining equations for $A(\phi)$.
2. Let V be an $L T L^{\prime}$ valuation and ϕ an LTL formula. Let V^{\prime} be the restriction of V to the propositions occurring in ϕ, i.e. let V^{\prime} be such that $\forall i \in \mathbb{N} . V^{\prime}(i)=V(i) \cap A(\phi)$. Prove that

$$
\forall i \in \mathbb{N} .\left((V, i) \models \phi \operatorname{iff}\left(V^{\prime}, i\right) \models \phi\right)
$$

