
Model Checking, SS2011: Exercise Sheet 9

June 6, 2011

Note. You may want to consult some online references on SICStus Prolog.

1. The SICStus Prolog libraries:
http://www.sics.se/sicstus/docs/4.0.4/html/sicstus/The-Prolog-Library.html

2. Built-In Prolog predicates:
http://www.cs.bham.ac.uk/~pjh/prolog_module/sicstus_manual_v3_5/
sicstus_10.html#SEC95

3. CLPQ library:
http://www.sics.se/sicstus/docs/4.0.4/html/sicstus/
lib_002dclpqr.html#lib_002dclpqr

Exercise 9.1. Create the following Prolog procedures.

1. Procedure reverse/2 that reverses a list.

2. Procedure last/2 such that last(L, E) succeeds if E is the last element
of the list L.

3. A procedure that removes the k-th element of a list. Example:

?- remove_at(X,[a,b,c,d],2,R).
X = b
R = [a,c,d]

4. Procedure clpq_inject/1 that takes a list L of CLPQ constraints and
injects the conjunction of the elements of L in the constraint store.

5. Procedure gcd/3 such that gcd(N1, N2, G) succeeds if G is the greatest
common divisor of N1 and N2.

6. Procedure coprime/2 that succeeds if its two parameters are coprime in-
tegers.

7. Procedure imp/2 such that imp(A,B) succeeds if A and B are CLPQ rep-
resentations of integer linear arithmetic formulas, and A entails B.

1

8. Procedure fib/2 such that a call fib(N, F) succeeds if F is the N-th
Fibonacci number.

9. Procedure sum/2 such that sum(L, S) succeeds if L is a list of integers
and S is the sum of the elements of L.

10. Procedure consistent/2 such that consistent(L, F) succeeds if L is a
list of CLPQ formulas, F is a CLPQ formula, and the following conjunction
is satisfiable. ∧

p∈L

p

 ∧ F

11. Consider the predicate t(Data, LeftTree, RightTree) that represents
the binary tree whose root is tagged with Data and whose left and right
subtrees are LeftTree and RightTree.Give a procedure binary_search/2
such that binary_search(T, N) succeeds if T is an ordered integer binary
tree, and N is the tag of some node.

Exercise 9.2. Assume you are given a program P = (X, pc, T, ϕinit , ϕerror).
Consider the following definitions.

post(φ) :=
∨
ρ∈T

post(ρ, φ)

F (φ) := ϕinit ∨ post(φ)

Prove that F is monotonic w.r.t |=, i.e. prove that if φ1 |= φ2, then F (φ1) |=
F (φ2).

Exercise 9.3. Consider a directed graph G = (s,Edges,Nodes) with start
node s. Consider the following algorithm.

ReachMore(R) = R ∪ {n ∈ Nodes | ∃ nr ∈ R . (nr, n) ∈ Edges}

1. Prove that ReachMore is monotonic w.r.t. to ⊆.

2. Encode ReachMore as a Prolog procedure reach_more/2.

3. Program in Prolog a concrete reachability algorithm that computes the
set of reachable states by computing a fixed point of ReachMore.

4. Test your concrete reachability program on the following graph.

start(1).
edge(1,2).
edge(2,2).
edge(2,3).
edge(3,4).
edge(3,5).

2

Exercise 9.4. Look up and understand the definition of partial order.

Exercise 9.5. Look up and understand the Knaster-Tarski Theorem.

Exercise 9.6. Do the following modifications to the abstract reachability
model checker presented in Lecture 10.

1. Upon termination, print a representation of the abstract reachability tree.

2. Upon reaching an error state, print the potential counter example path.

3. Modify abst_reach_step so that new abstract states are printed when
discovered.

Exercise 9.7. Consider the Forward-Symbolic-Reachability Prolog program
available online1. Improve the program by printing upon termination a coun-
terexample path if there is any.

1http://www7.in.tum.de/um/courses/mc/ss2011/fsr.pl

3

