Model Checking, SS2011: Exercise Sheet 6

May 23, 2011

Note. Let α denote the abstraction function *more*.

Exercise 6.1. Consider the definition of the relational composition operator

$$\varphi(v,v') \circ \psi(v,v') := \exists v'' \cdot \varphi(v,v'') \land \psi(v'',v')$$

Consider the transition relations ρ_1, \ldots, ρ_5 in exercise 2.6. Compute the following relational compositions.

1. $\rho_1 \circ \rho_2$ 2. $\rho_3 \circ \rho_5$ 3. $\rho_3 \circ \rho_4$ 4. $\rho_1 \circ \rho_4$

Exercise 6.2. Prove that

 $post(\psi, post(\varphi, \delta)) \equiv post(\varphi \circ \psi, \delta)$

Exercise 6.3. Let $p \in Preds$. Let α denote the abstraction function *more*. Prove that for all φ such that $\varphi \models p$, it holds that $\alpha(\varphi) \models p$.

Exercise 6.4. Consider the program P from exercise 2.6 and the set of predicates $Preds = \{pc = l_1, \ldots, l_5, \bot\}$. Let I and J be predicates satisfying the (concrete reachability) proposition

$$post(\rho_1, pc = l_1) \models I \land post(\rho_3, I) \models J \land post(\rho_5, J) \models \bot$$

Prove that giving α the set of predicates $Preds' = Preds \cup \{I, J\}$, I and J satisfy the (abstract reachability) proposition

 $\alpha(post(\rho_1, pc = l_1)) \models I \land \alpha(post(\rho_3, I)) \models J \land \alpha(post(\rho_5, J)) \models \bot$