Model Checking, SS2011: Exercise Sheet 5

May 17, 2011

Note. Let us denote (integer) linear arithmetic formulas by F, φ_{A} and φ_{B}.
Exercise 5.1. Prove or refute each of the following propositions.

$$
\begin{align*}
& \left(\exists x^{\prime} . \mathrm{F} \wedge x=x^{\prime}\right) \equiv \exists x^{\prime} \cdot \mathrm{F}\left[x^{\prime} / x\right] \tag{1}\\
& \left(\exists x^{\prime} . \mathrm{F} \wedge x=x^{\prime}\right) \equiv \exists x^{\prime} \cdot \mathrm{F}\left[x / x^{\prime}\right] \tag{2}
\end{align*}
$$

Exercise 5.2. Give an interpolant for each pair of formulas.

1. $\varphi_{A}:=(x \geq z \wedge z>y+1), \varphi_{B}:=(x+1 \leq y)$
2. $\varphi_{A}:=(x-y=0 \wedge y+y \geq 1), \varphi_{B}:=(x \leq 0)$
3. $\varphi_{A}:=(x=1 \vee x>0 \wedge z>1), \varphi_{B}:=(x>1)$
4. $\varphi_{A}:=(z+2 \leq x \wedge x+1 \leq y-3), \varphi_{B}:=(y>0 \vee z>0)$
5. $\varphi_{A}:=(z+2 \leq x \wedge x+1 \leq y-3 \wedge z+2 \geq 4), \varphi_{B}:=(y>8 \vee z<0)$

Exercise 5.3. Let the programs given in exercises 3.3 and 3.4 be $P_{3.3}$ and $P_{3.4}$. Execute the Abstract Rechability (AR) algorithm on those programs. Use the function more as abstraction function, and the sets of predicates Preds $3_{3.3}=$ $\left\{p c=l_{\text {init }}, x \leq y, \perp, x \leq y+1, x>y\right\}$ and Preds $_{3.4}=\left\{p c=l_{1}, \perp, x-1 \geq\right.$ $\left.y, p c=l_{\text {exit }}, p c=l_{\text {err }}\right\}$ for $P_{3.3}$ and $P_{3.4}$.

Exercise 5.4. Consider the following source code fragment.

```
assume(y <= z);
while(x > y) x--;
assert(x <= z);
```

A corresponding program for the fragment is $P=\left(X, p c, T, \varphi_{\text {init }}, \varphi_{\text {err }}\right)$ where

- $X=\{x, y, z\}$
- $T=\left\{\rho_{1}, \ldots, \rho_{5}\right\}$
- $\varphi_{i n i t}=\left(p c=l_{1}\right)$
- $\varphi_{e r r}=\left(p c=l_{5}\right)$
- $\rho_{1}=\left(p c=l_{1} \wedge p c^{\prime}=l_{2} \wedge y \leq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)$
- $\rho_{2}=\left(p c=l_{2} \wedge p c^{\prime}=l_{2} \wedge x>y \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right)$
- $\rho_{3}=\left(p c=l_{2} \wedge p c^{\prime}=l_{3} \wedge x \leq y \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)$
- $\rho_{4}=\left(p c=l_{3} \wedge p c^{\prime}=l_{4} \wedge x \leq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)$
- $\rho_{5}=\left(p c=l_{3} \wedge p c^{\prime}=l_{5} \wedge x>z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)$

Give a set of predicates for the abstraction function more such that the AR algorithm gives a set formulas AbstReach such that

$$
\neg \exists x, y, z, p c .(\bigvee \text { AbstReach }) \wedge \varphi_{e r r}
$$

Exercise 5.5. Draw the reachability tree denoted by the output of $A R$ in exercise 5.4.

