
Model Checking (IN2050)
Summer 2010

Andrey Rybalchenko

TUM

Slides courtesy of Stefan Schwoon, ENS Cachan

Part 3: Linear-time logic

2

Preliminaries

Linear-time logic in general:

any logic working with sequences of valuations

model: time progresses in discrete steps and in linear fashion, each point in
time has exactly one possible future

origins in philosophy/logic

Most prominent species: LTL

in use for verification since end of the 1970s

spezification of correctness properties

3

Recap

Let AP be a set of atomic propositions.

2AP denotes the powerset of AP, i.e. its set of subsets.

(2AP)ω denotes the set of (infinite) sequences of valuations (of AP).

4

Syntax of LTL

Let AP be a set of atomic propositions. The set of LTL formulae over AP is
inductively defined as follows:

If p ∈ AP then p is a formula.

If φ1, φ2 are formulae then so are

¬φ1, φ1 ∨ φ2, Xφ1, φ1 U φ2

Intuitive meaning: X =̂ “next”, U =̂ “until”.

5

Remarks

This is a minimal syntax that we will use for proofs etc.

For added expressiveness, we will later define some abbreviations based on the
minimal syntax.

Comparision of propositional logic (PL) and LTL:

PL LTL

Syntax atomic proposition, logic operators + temporal operators

Evaluated on. . . valuations sequences of valuations

Semantics set of valuations set of valuation sequences

6

Semantics of LTL

Let φ be an LTL formula and σ a valuation sequence.
We write σ |= φ for “σ satisfies φ.”

σ |= p if p ∈ AP and p ∈ σ(0)

σ |= ¬φ if σ 6|= φ

σ |= φ1 ∨ φ2 if σ |= φ1 or σ |= φ2

σ |= Xφ if σ1 |= φ

σ |= φ1 U φ2 if ∃i :
(
σi |= φ2 ∧ ∀k < i : σk |= φ1

)

Semantics of φ: [[φ]] = {σ | σ |= φ }

7

Examples

Let AP = {p, q, r}. Find out whether the sequence

σ = {p} {q} {p}ω

satisfies the following formulae:

p

q

X q

X¬p

p U q

q U p

(p ∨ q) U r

8

Extended syntax

We will commonly use the following abbreviations:

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) Fφ ≡ true U φ

φ1 → φ2 ≡ ¬φ1 ∨ φ2 Gφ ≡ ¬F¬φ
true ≡ a ∨ ¬a φ1 W φ2 ≡ (φ1 U φ2) ∨Gφ1

false ≡ ¬true φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2)

Meaning: F =̂ “finally” (eventually), G =̂ “globally” (always),
W =̂ “weak until”, R =̂ “release”.

9

Some example formulae

Invariant: G¬(cs1 ∧ cs2)

cs1 and cs2 are never true at the same time.

Remark: This particular form of invariant is also called mutex property (“mutual
exclusion”).

Safety: (¬x) W y

x does not occur before y has happend.

Remark: It may happen that y never happens in which case x also never
happens.

Liveness: (¬x) U y

x does not occur before y and y eventually happens.

10

More examples

GF p

p occurs infinitely often.

FG p

At some point p will continue to hold forever.

G(try1 → F cs1)

For mutex algorithms: Whenever process 1 tries to enter its critical section it
will eventually succeed.

11

Tautology, equivalence

Certain oncepts from propositional logic can be transferred to LTL.

Tautology: A formula φ with [[φ]] = (2AP)ω is called tautology.

Unsatisfiability: A formula φ with [[φ]] = ∅ is called unsatisfiable.

Equivalence: Two formulae φ1, φ2 are called equivalent iff [[φ1]] = [[φ2]].
Denotation: φ1 ≡ φ2

12

Equivalences: relations between operators

X(φ1 ∨ φ2) ≡ Xφ1 ∨ Xφ2

X(φ1 ∧ φ2) ≡ Xφ1 ∧ Xφ2

X¬φ ≡ ¬Xφ

F(φ1 ∨ φ2) ≡ Fφ1 ∨ Fφ2

¬Fφ ≡ G¬φ

G(φ1 ∧ φ2) ≡ Gφ1 ∧ Gφ2

¬Gφ ≡ F¬φ

(φ1 ∧ φ2) U ψ ≡ (φ1 U ψ) ∧ (φ2 U ψ)

φU (ψ1 ∨ ψ2) ≡ (φU ψ1) ∨ (φ1 U ψ2)

13

Equivalences: idempotence and recursion laws

Fφ ≡ FFφ

Gφ ≡ GGφ

φU ψ ≡ φU (φU ψ)

Fφ ≡ φ ∨XFφ

Gφ ≡ φ ∧XGφ

φU ψ ≡ ψ ∨ (φ ∧X(φU ψ))

φW ψ ≡ ψ ∨ (φ ∧X(φW ψ))

14

Interpretation of LTL on Kripke structures

Let K = (S,→, r ,AP, ν) be a Kripke structure.
We are interested in the valuation sequences generated by K.

Let ρ in Sω be an infinite path of K.

We assign to ρ an “image” ν(ρ) in (2AP)ω; for all i ≥ 0 let

ν(ρ)(i) = ν(ρ(i))

i.e. ν(ρ) is the corresponding valuation sequence.

Let [[K]] denote the set of all such sequences:

[[K]] = { ν(ρ) | ρ is an infinite path of K}

15

The LTL model-checking problem

Problem: Given a Kripke structure K = (S,→, r ,AP, ν) and an LTL formula φ
over AP, does [[K]] ⊆ [[φ]] hold?

Definition: If [[K]] ⊆ [[φ]] then we write K |= φ.

Interpretation: Every execution of K must satisfy φ for K |= φ to hold.

Remark: We may have K 6|= φ and K 6|= ¬φ!

16

Example

Consider the following Kripke structure K with AP = {p}:

s0

{ }{p}

s1 s2

{p}

There are two classes of infinite paths in K:

(i) Either the system stays in s0 forever,

(ii) or it eventually reaches s2 via s1 and remains there.

We have:

K |= FG p because all runs eventually end in a state satisfying p.

K 6|= G p because executions of type (ii) contain a non-p state.

17

Dealing with deadlocks

The definition of the model-checking problem only considers the infinite
sequences!

Thus, executions reaching a deadlock (i.e. a state without any successor) will be
ignored, with possibly unforeseen consequences:

Suppose K contains an error, so that every execution reaches a deadlock.

Then [[K]] = ∅, so K satisfies every formula, according to the definition.

18

Possible alternatives

Remove deadlocks by design:

equip deadlock states with a self loop

Interpretation: system stays in deadlock forever

adapt formula accordingly, if necessary

Treat deadlocks specially:

Check for deadlocks before LTL model checking, deal with them separately.

19

Part 4: Büchi automata

20

Preview

Model-checking problem: [[K]] ⊆ [[φ]] – how can we check this algorithmically?

(Historically) first approach: Translate K into an LTL formula ψK, check whether
ψK → φ is a tautology. Problem: very inefficient.

Language-/automata-theoretic approach: [[K]] and [[φ]] are languages (of infinite
words).

Find a suitable class of automata for representing these languages.

Define suitable operations on these automata for solving the problem.

This is the approach we shall follow.

21

Büchi automata

A Büchi automaton is a tuple

B = (Σ,S, s0,∆,F),

where:

Σ is a finite alphabet;

S is a finite set of states;

s0 ∈ S is an initial state;

∆ ⊆ S ×Σ× S are transitions;

F ⊆ S are accepting states.

Remarks:

Definition and graphical representation like for finite automata.

However, Büchi automata are supposed to work on infinite words, requiring a
different acceptance condition.

22

Example

Graphical representation of a Büchi automaton:

s2s1 a b

The components of this automaton are (Σ,S, s1,∆,F), where:

• Σ = {a, b} (symbols on the edges)

• S = {s1, s2} (circles)

• s1 (indicated by arrow)

• ∆ = {(s1, a, s2), (s2, b, s2)} (edges)

• F = {s2} (with double circle)

23

Language of a Büchi automaton

Let B = (Σ,S, s0,∆,F) be a Büchi automaton.

A run of B over an infinite word σ ∈ Σω is an infinite sequences of states ρ ∈ Sω

where ρ(0) = s0 and (ρ(i), σ(i), ρ(i + 1)) ∈∆ for i ≥ 0.

We call ρ accepting iff ρ(i) ∈ F for infinitely many values of i .

I.e., ρ infinitely often visits accepting states.
(By the pigeon-hole principle: at least one accepting state is visited infinitely often.)

σ ∈ Σω is accepted by B iff there exists an accepting run over σ in B.

The language of B, denoted L(B), is the set of all words accepted by B.

24

Büchi automata: examples

“infinitely often b” q0 q1

a
b

b

a

“infinitely often ab” q0 q1

a,b
a

b

25

Büchi automata and LTL

Let AP be a set of atomic propositions.

A Büchi automaton with alphabet 2AP accepts a sequence of valuations.

Claim: For every LTL formula φ there exists a Büchi automaton B such that
L(B) = [[φ]].

(We shall prove this claim later.)

Examples: F p, G p, GF p, G(p → F q), FG p

26

Example automaton for G(p → F q), with AP = {p, q}.

q1q0

{},{q},{p,q}
{p}

{q},{p,q}

{},{p}

Alternatively we can label edges with formulae of propositional logic; in this case,
a formula F stands for all elements of [[F]]. In this case:

q

q

q1q0

p q

p q

27

Operations on Büchi automata

The languages accepted by Büchi automata are also callled ω-regular
languages.

Like the usual regular languages, ω-regular languages are also closed under
Boolean operations.

I.e., if L1 and L2 are ω-regular, then so are

L1 ∪ L2, L1 ∩ L2, Lc
1.

We shall now define operations that take Büchi automata accepting some
languages L1 and L2 and produce automata for their union or intersection.

In the following slides we assume B1 = (Σ,S, s0,∆1,F) and
B2 = (Σ,T , t0,∆2,G) (with S ∩ T = ∅).

28

Union

“Juxtapose” B1 and B2 and add a new initial state.

In other words, the automaton B = (Σ, S ∪T ∪{u}, u, ∆1∪∆2∪∆u, F ∪G)

accepts L(B1) ∪ L(B2), where

u is a “fresh” state (u /∈ S ∪ T);

∆u = { (u, σ, s) | (s0, σ, s) ∈∆1 } ∪ { (u, σ, t) | (t0, σ, t) ∈∆2 }.

29

Intersection I (a special case)

We first consider the case where all states in B2 are accepting, i.e. G = T .

Idea: Construct a cross-product automaton (like for FA), check whether F is
visited infinitely often.

Let B = (Σ, S × T , 〈s0, t0〉, ∆, F × T), where

∆ = { (〈s, t〉, a, 〈s′, t ′〉) | a ∈ Σ, (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2 }.

Then: L(B) = L(B1) ∩ L(B2).

30

Intersection II (the general case)

Principle: We again construct a cross-product automaton.

Problem: The acceptance condition needs to check whether both accepting sets
are visited infinitely often.

Idea: create two copies of the cross product.

– In the first copy we wait for a state from F .

– In the second copy we wait for a state from G.

– In both copies, once we’ve found one of the states we’re looking for, we
switch to the other copy.

We will choose the acceptance condition in such a sway that an accepting run
switches back and forth between the copies infinitely often.

31

Let B = (Σ,U, u,∆,H), where

U = S × T × {1,2}, u = 〈s0, t0,1〉, H = F × T × {1}

(〈s, t ,1〉, a, 〈s′, t ′,1〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, s /∈ F

(〈s, t ,1〉, a, 〈s′, t ′,2〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, s ∈ F

(〈s, t ,2〉, a, 〈s′, t ′,2〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, t /∈ G

(〈s, t ,2〉, a, 〈s′, t ′,1〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, t ∈ G

Remarks:

The automaton starts in the first copy.

We could have chosen other acceptance conditions such as S × G × {2}.

The construction can be generalized to intersecting n automata.

32

Intersection: example
a

b
b

a

a
b

b

a

s0 s1 t0 t1

B1 B2

s0,t0,1 s1,t1,2

s0,t0,2 s1,t1,1

a

a

b

b

a b

b a

B1 x B2

33

Complement

Problem: Given B1, construct B with L(B) = L(B1)c.

Such a construction is possible (but rather complicated). We will not require it for
the purpose of this course.

Additional literature:

Wolfgang Thomas, Automata on Infinite Objects,
Chapter 4 in Handbook of Theoretical Computer Science,

Igor Walukiewicz, lecture notes on Automata and Logic, chapter 3,
www.labri.fr/Perso/˜igw/Papers/igw-eefss01.ps

34

Deterministic Büchi automata

For finite automata (known from regular language theory), it is known that every
language expressible by a finite automaton can also be expressed by a
deterministic automaton, i.e. one where the transition relation ∆ is a function
S ×Σ→ S.

Such a procedure does not exist for Büchi automata.

In fact, there is no deterministic Büchi automaton accepting the same language
as the automaton below:

“Only finitely many a s.”

ba,b

b
s0 s1

35

Proof: Let L be the language of infinite words over {a, b} containing only finitely
many as. Assume that a deterministic Büchi automaton B with L(B) = L exists,
and let n be the number of states in B.

We have bω ∈ L, so let α1 be the (unique) accepting run for bω. Suppose that an
accepting state is first reached after n1 letters, i.e. s1 := α1(n1) is the first
accepting state in α1.

We now regard the word bn1abω, which is still in L, therefore accepted by some
run α2. Since B is deterministic, α1 and α2 must agree on the first n1 states.
Now, watch for the second occurrence of an accepting state in α2, i.e. let
s2 := α2(n1 + 1 + n2) be an accepting state for n2 minimal. Then, s1 6= s2
because otherwise there would be a loop around an accepting state containing a
transition with an a.

We now repeat the argument for bn1abn2abω, derive the existence of a third
distinct state, etc. After doing this n + 1 times, we conclude that B must have
more than n distinct states, a contradiction.

36

Preview

(1)LTL

(3)

gener. BA

BA

(2)

We shall proceed in the order indicated above.

37

Generalized Büchi automata

A generalized Büchi automaton (GBA) is a tuple G = (Σ,S, s0,∆,F).

There is only one difference w.r.t. normal BA:

The acceptance condition F ⊆ 2S is a set of sets of states.

E.g., let F = {F1, . . . ,Fn}. A run ρ of G is called accepting iff for every Fi
(i = 1, . . . , n), ρ visits infinitely many states of Fi .

Put differently: many acceptance conditions at once.

38

GBA: Example

For the GBA shown below, let F = { {q0}, {q1} }.

a
b

b

a

q0 q1

Language of the automaton: “infinitely often a and infinitely often b”

Note: In general, the acceptance conditions need not be pairwise disjoint.

Advantage: GBA may be more succinct than BA.

39

Translations BA↔ GBA

GBA accept the same class of languages as BA.

I.e., for every BA there is a GBA accepting the same language, and vice versa.

Part 1 of the claim (BA→ GBA):

Let B = (Σ,S, s0,∆,F) be a BA.

Then G = (Σ,S, s0,∆, {F}) is a GBA with L(G) = L(B).

40

Part 2 of the claim (GBA→ BA):

Let G = (Σ,S, s0,∆, {F1, . . . ,Fn}) be a GBA.

We construct B = (Σ,S′, s′0,∆
′,F) as follows:

S′ = S × {1, . . . , n}

s′0 = (s0,1)

F = F1 × {1}

((s, i), a, (s′, k)) ∈∆′ iff 1 ≤ i ≤ n, (s, a, s′) ∈∆

and k =

i if s /∈ Fi
(i mod n) + 1 if s ∈ Fi

Then we have L(B) = L(G). (Idea: n-fold intersection)

41

GBA→ BA: example

The BA corresponding to the previous GBA (“infinitely often a and infinitely often
b”) is as follows:

b

b

q0,1 q1,1

q0,2 q1,2
b

a

a

a

b

a

42

Remark: Multiple initial states

Our definitions of BA and GBA require exactly one initial state.

For the translation LTL→ BA it will be convenient to use GBA with multiple initial
states.

Intended meaning: A word is regarded as accepted if it is accepted starting
from any initial state.

Obviously, every (G)BA with multiple initial states can easily be converted into a
(G)BA with just one initial state.

43

Part 5: LTL and Büchi automata

44

Overview

In this part, we shall solve the following problem:

Given an LTL formula φ over AP, we shall construct a GBA G (with multiple
initial states) such that L(G) = [[φ]].

(G can then be converted to a normal BA.)

Remarks:

Analogous operation for regular languages: reg. expression→ NFA

The crucial difference: it is not possible to provide an LTL→ BA translation in
modular fashion.

The automaton may have to check multiple subformulae at the same time
(e.g.: (GF p)→ (G(q → F r)) or (p U q) U r).

45

More remarks:

The construction shown in the following is comparatively simplistic.

It will produce rather suboptimal automata (size always exponential in |φ|).

Obviously, this is quite inefficient, and not meant to be done by pen and
paper, only as a “proof of concept”.

There are far better translation procedures but the underlying theory is rather
beyond the scope of the course.

Interesting, on-going research area!

46

Structure of the construction

1. We first convert φ into a certain normal form.

2. States will be “responsible” for some set of subformulae.

3. The transition relation will ensure that “simple” subformulae such as p or X p
are satisfied.

4. The acceptance condition will ensure that U-subformulae are satisfied.

47

Negation normal form

Let AP be a set of atomic propositions. The set of NNF formulae over AP is
inductively defined as follows:

If p ∈ AP then p and ¬p are NNF formulae.
(Remark: Negations occur exclusively in front of atomic propositions.)

If φ1 and φ2 are NNF formulae then so are

φ1 ∨ φ2, φ1 ∧ φ2, Xφ1, φ1 U φ2, φ1 R φ2.

Claim: For every LTL formula φ there is an equivalent NNF formula:

¬(φ1 R φ2) ≡ ¬φ1 U ¬φ2 ¬(φ1 U φ2) ≡ ¬φ1 R ¬φ2

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2 ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2

¬Xφ ≡ X¬φ ¬¬φ ≡ φ

48

NNF: Example

Translation into an NNF formula:

G(p → F q) ≡ ¬F¬(p → F q)

≡ ¬(true U ¬(p → F q))

≡ ¬true R (p → F q)

≡ false R (¬p ∨ F q)

≡ false R (¬p ∨ (true U q))

Remark: Because of this, we shall henceforth assume that the LTL formula in the
translation procedure is given in NNF.

49

Subformulae

Let φ be an NNF formula. The set Sub(φ) is the smallest set satisfying:

φ ∈ Sub(φ);

true ∈ Sub(φ);

if φ1 ∈ Sub(φ) then ¬φ1 ∈ Sub(φ), and vice versa;

if Xφ1 ∈ Sub(φ) then φ1 ∈ Sub(φ);

if φ1 ∨ φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 ∧ φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 U φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 R φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ).

Note: We have |Sub(φ)| = O(|φ|) (one subformula per syntactic element).

50

Consistent sets

Recall item 2 of the construction:

Every state will be labelled with a subset of Sub(φ).

Idea: A state labelled by set M will accept a sequence iff it satisfies every single
subformula contained in M and violates every single subformula contained in
Sub(φ) \M.

For this reason, we will a priori exclude some sets M which would obviously lead
to empty languages.

The other states will be called consistent.

51

Definition: We call a set M ⊂ Sub(φ) consistent if it satisfies the following
conditions:

true ∈ M

if φ1 ∈ Sub(φ) then ¬φ1 ∈ M gdw. φ1 /∈ M;

if φ1 ∧ φ2 ∈ Sub(φ) then φ1 ∧ φ2 ∈ M iff φ1 ∈ M and φ2 ∈ M;

if φ1 ∨ φ2 ∈ Sub(φ) then φ1 ∨ φ2 ∈ M iff φ1 ∈ M or φ2 ∈ M.

By CS(φ) we denote the set of all consistent subsets of Sub(φ).

52

Translation (1)

Let φ be an NNF formula and G = (Σ,S,S0,∆,F) be a GBA such that:

Σ = 2AP

(i.e. the valuations over AP)

S = CS(φ)

(i.e. every state is a consistent set)

S0 = {M ∈ S | φ ∈ M }
(i.e. the initial states admit sequences satisfying φ)

∆ and F : see next slide

53

Translation (2)

Transitions: (M, σ,M ′) ∈∆ iff σ = M ∩ AP and:

– if Xφ1 ∈ Sub(φ) then Xφ1 ∈ M iff φ1 ∈ M ′;

– if φ1 U φ2 ∈ Sub(φ) then φ1 U φ2 ∈ M
iff φ2 ∈ M or (φ1 ∈ M and φ1 U φ2 ∈ M ′);

– if φ1 R φ2 ∈ Sub(φ) then φ1 R φ2 ∈ M
iff φ1 ∧ φ2 ∈ M or (φ2 ∈ M and φ1 R φ2 ∈ M ′).

Acceptance condition:

F contains a set Fψ for every subformula ψ of the form φ1 U φ2, where

Fψ = {M ∈ CS(φ) | φ2 ∈ M or ¬(φ1 U φ2) ∈ M }.

54

Translation: Example 1

φ = X p

{p, X p} {p}

{X p} { }

{ } {p}
{p}

{ }

{p}

{ }

{p}

{ }

This GBA has got two initial states and the acceptance condition F = ∅, i.e. every infinite run
is accepting. (Negated Formulas omitted from state labels.)

55

Translation: Example 2

φ ≡ p U q

{q}

{p}

{ }

{p, q}

{q, p U q}

{p, p U q}

{p U q}

{p, q, p U q}
s0

s1

s2

s3 s7

s6

s5

s4

GBA with F = {{s0, s1, s4, s5, s6, s7}}, transition labels also omitted.

56

Proof of correctness

We want to prove the following:

σ ∈ L(G) gdw. σ ∈ [[φ]]

To this aim, we shall prove the following stronger property:

Let α be a sequence of consistent sets (i.e., states of G)
and let σ be a sequence of valuations over AP.

α is an accepting run of G over σ
iff σi ∈ [[ψ]] for all i ≥ 0 and ψ ∈ α(i).

The desired proof then follows from the choice of initial states.

57

Correctness (2)

Remark: By construction, we have σ(i) = α(i) ∩ AP for all i ≥ 0.

Proof via structural induction over ψ:

for ψ = p and ψ = ¬p if p ∈ AP:
obvious since σi ∈ [[p]] iff p ∈ σ(i) iff p ∈ α(i).

for ψ1 ∨ ψ2 and ψ1 ∧ ψ2: follows from consistency of α(i) and from the
induction hypothesis for ψ1 and ψ2, resp.

for Xψ1: follows from the construction of ∆ and induction hypothesis for ψ1.

58

Correctness (3)

for ψ = ψ1 R ψ2:

Follows from the construction of ∆, the recursion equation for R and the
induction hypothesis.

for ψ = ψ1 U ψ2:

Analogous to R, but additionally we must ensure that ψ2 ∈ α(k) for some
k ≥ i . Assume that this is not the case, then we have ψ1 U ψ2 ∈ α(k) for all
k ≥ i . However, none of these states is in Fψ, therefore α cannot be
accepting, which is a contradiction.

59

Complexity of the translation

The translation procedure produces an automaton of size O(2|φ|), for a formula
φ.

Question: Is there a better translation procedure?

60

Answer 1: No (not in general). There exist formulae for which any Büchi
automaton has necessarily exponential size.

Example: The following LTL formula over {p0, . . . , pn−1} simulates an n-bit
counter.

G(p0 6↔ X p0) ∧
n−1∧
i=1

G

((
pi 6↔ X pi

)
↔
(
pi−1 ∧ ¬X pi−1

))

The formula has size O(n). Obviously, any automaton for this formula must have
at least 2n states.

61

Answer 2: Yes (sometimes). There are translation procedures that produce
smaller automata for most cases.

Some tools:

Spin (Aufruf: spin -f ’p U q’)

LTL2BA (web applet)

Literature:

Gerth, Peled, Vardi, Wolper: Simple On-the-fly Automatic Verification of
Linear Temporal Logic, 1996

Oddoux, Gastin: Fast LTL to Büchi Automata Translation, 2001

62

Translation BA→ LTL

The reverse translation (BA→ LTL) is not possible in general.

I.e., there are Büchi automata B such that there is no formula φ with
L(B) = [[φ]] (Wolper, 1983).

q0 q1
{p}

{ }, {p}

The property “p holds in every second step” is not expressible in LTL (proof: next
slide).

63

Proof (BA 6→ LTL)

We first show a more general lemma:

Let φ be an arbitrary LTL formula over AP and n the number of X operators in
φ. We regard the sequences

σi = {p}i ∅ {p}ω

for i ≥ 0. For all pairs i, k > n we have: σi |= φ iff σk |= φ.

Proof by structural induction over φ:

If φ = p, for p ∈ AP, then n = 0 and i, k ≥ 1.
Thus, σi |= p and σk |= p.

For the other cases, the induction hypothesis assumes that the property holds
for φ1 und φ2, i.e. if φ1, φ2 contain n1 and n2 occurrences of X, resp., then
for all i1, k1 > n1 we have σi1 |= φ1 iff σk1

|= φ1, and analogously for φ2.

64

If φ = ¬φ1, then the proof follows directly from the induction hypothesis.

For φ = φ1 ∨ φ2: same

If φ = Xφ1, then n1 = n − 1. Since i − 1, k − 1 > n − 1 = n1, the induction
hypothesis implies: σ1

i = σi−1 |= φ1 iff σ1
k = σk−1 |= φ1, which implies the

proof.

For φ = φ1 U φ2: Let m > n. We have:

φ1 U φ2 ≡ φ2 ∨ (φ1 ∧X(φ1 U φ2))

Applying this law recursively we obtain:

σm |= φ gdw. σm |= φ2 ∨ (σm |= φ1 ∧ (σm−1 |= φ2 ∨ (. . .

(σn+1 |= φ1 ∧ σn |= φ1 U φ2))))

65

According to the induction hypothesis, we can replace indices bigger than n
equivalently by n + 1:

σm |= φ gdw. σn+1 |= φ2 ∨ (σn+1 |= φ1 ∧ (σn+1 |= φ2 ∨ (. . .

(σn+1 |= φ1 ∧ σn |= φ1 U φ2))))

This can be simplified to the following:

σm |= φ gdw. σn+1 |= φ2 ∨ (σn+1 |= φ1 ∧ σn |= φ1 U φ2)

Thus, the validity of σm |= φ is completely independent of m, leading to the
desired property for i and k , which concludes the proof of the lemma.

66

Let us now assume that there exists an LTL formula φ expressing the property of
the aforementioned BA (“p holds in every second step”). Let n be the number of
occurrences of X in φ.

Let us consider the sequences σn+1 and σn+2.

If n is even then σn+1 6|= φ and σn+2 |= φ. If n is odd, then vice versa.

However, the previous lemma tells us that this is impossible: either σn+1 and
σn+2 both satisfy φ, or none of them does. Therefore, such a formula φ cannot
exist.

67

The model-checking problem for LTL (preview)

Problem: Given a Kripke structure K = (S,→, r ,AP, ν) and an LTL formula φ
over AP, we ask whether K |= φ.

Solution: (sketch)

We re-interpret K as a Büchi automaton BK:

BK = (2AP,S, r ,∆,S), where ∆ = { (s, ν(s), t) | s → t }

Obviously, [[K]] = L(BK).

Moreover, we translate ¬φ into a Büchi automaton B¬φ.

68

We have:

K |= φ

⇐⇒ [[K]] ⊆ [[φ]]

⇐⇒ [[K]] ∩ [[¬φ]] = ∅
⇐⇒ L(BK) ∩ L(B¬φ) = ∅

Therefore:

We construct Büchi automata BK and B¬φ.

We intersect both automata (using the special-case construction).

Thus, the model-checking problem reduces to the problem of deciding
whether the product automaton accepts the empty language.

69

Part 6: Efficient Emptiness Test

for Büchi Automata

70

Overview

As we have seen, the model-checking problem reduces to checking whether the
language of a certain Büchi automaton B is empty.

Reminder: B arises from the intersection of a Kripke structure K with a BA for the
negation of φ.

If B accepts some word, we call such a word a counterexample.

K |= φ iff B accepts the empty language.

71

Typical instances:

Size of K: between several hundreds to millions of states.

Size of B¬φ: usually just a couple of states

Typical setting (e.g., in Spin):

K indirectly given in some description language (C, Java / in Spin: Promela);
model-checking tools will generate K internally.

B¬φ generated from φ before start of emptiness check.

72

Typical setting:

B generated “on-the-fly” from (the description of) K and from B¬φ and tested
for emptiness at the same time.

As a consequence, the size of K (and of B) is not known initially!

At the beginning, only the initial state is known, and we have a function
succ: S → 2S for computing the immediate successors of a given state (the
function implements the semantics of the description).

73

Memory requirements

Transitions not stored explicitly, will be explored “on demand” by calling succ

(calls to succ will be comparatively costly).

Hash table for explored states.

Information stored for each state:

Descriptor: program counter, variable values, active processes, etc
(often dozens or hundreds of bytes)

Auxiliary information: Data needed by the emptiness test
(a couple of bytes)

74

Simple solution I: Check for Lassos

Let B = (Σ,S, s0, δ,F) be a Büchi automaton.

L(B) 6= ∅ iff there is s ∈ F such that s0 →∗ s →+ s

s0 s ... s

Naı̈ve solution:

Check for each s ∈ F whether there is a cycle around s; let F◦ ⊆ F denote
the set of states with this property.

Check whether s0 can reach some state in F◦.

Time requirement: Each search takes linear time in the size of B, altogether
quadratic run-time→ unacceptable for millions of states.

75

Strongly connected components

C ⊆ S is called a strongly connected component (SCC) iff

s →∗ s′ for all s, s′ ∈ C;

C is maximal w.r.t. the above property, i.e. there is no proper superset of C
satisfying the above.

An SCC C is called trivial if |C| = 1 and for the unique state s ∈ C we have
s 6→ s (single state without loop).

76

Example: SCCs

s0

s1

s2 s3

s4

s5

s6

s7

s8

s9

s10

s11

The SCCs {s0} and {s1} are trivial.

77

Simple algorithm II: SCCs

Observation: L(B) 6= ∅ iff B has a non-trivial SCC that is reachable from s0 and
contains an accepting state.

Simple algorithm: for every accepting state s

compute the set Vs of the predecessors of s;

compute the set Ns of the successors of s;

Vs ∩ Ns is the SCC containing s;

test whether Vs ∩ Ns ⊃ {s} or s → s.

Running time: again quadratic

78

Efficient solution

In the following, we shall discuss a solution whose run-time is linear in |B|
(i.e. proportional to |S|+ |δ|).

The solution is based on depth-first search (DFS) and on partitioning B into its
SCCs.

Literature: [Tarjan 1972], Couvreur 1999, Gabow 2000

79

Depth-first search (basic version)

nr = 0;

hash = {};

dfs(s0);

exit;

dfs(s) {

add s to hash;

nr = nr+1;

s.num = nr;

for (t in succ(s)) {

// deal with transition s -> t

if (t not yet in hash) { dfs(t); }

}

}

80

Memory usage

Global variables: counter nr, hash table for states

Auxiliary information: “DFS number” s.num

search path: Stack for memorizing the “unfinished” calls to dfs

81

Example: Depth-first search

1

s1

s2 s3

s4

s5 s7

s6 s8

s9 s11

s10

Search path shown in red, other visited states black, states not yet seen grey.

82

Example: Depth-first search

1

s1

s2 s3

s4

s5 s7

s6 s8

s9 s11

s10

DFS starts at initial state and explores some immediate successor.

83

Example: Depth-first search

1

2

s2 s3

s4

s5 s7

s6 s8

s9 s11

s10

Successor state not yet visited; recursive call, assigned to number 2.

84

Example: Depth-first search

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

More unvisited states are being explored. . .

85

Example: Depth-first search

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

Edge from 4 to 3: target state already known, no recursive call

86

Example: Depth-first search

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

All immediate successors of 4 have been explored; backtrack.

87

Example: Depth-first search

1

2

3 4

5

s5 s7

s6 s8

s9 s11

s10

Backtracking proceeds to state 1, next successor gets number 5.

88

Example: Depth-first search

2

3 4 6

1

5 8

7 9

12 11

10

Possible numbering at the end of DFS.

89

Properties of the search path

(1) Let s0s1 . . . sn be the search path at some point during DFS.
Then we have si .num < sj .num iff i < j .
Moreover, si →∗ sj if i < j .

Proof: follows from the logic of the program and the order of recursive calls.

90

Search order

If a state has got multiple immediate successors, they must be explored in some
order.

The DFS numbering therefore depends on the order in which these successors
are explored; multiple different numberings are possible.

The search order may influence how quickly a counterexample is found (if one
exists)!

Annahme hier: Suchordnung extern gegeben.

Denkbare Erweiterung: “intelligente” Suchordnung, die zusätzliches Wissen über
das Modell miteinbezieht.

91

Example: Search order

11 10 3

1

2 9

4 5

8 7

6

12

Possible alternative numbering for a different search order.

92

Search order

If a state has got multiple immediate successors, they must be explored in some
order.

The DFS numbering therefore depends on the order in which these successors
are explored; multiple different numberings are possible.

The search order may influence how quickly a counterexample is found (if one
exists)!

Assumption: search-order non-deterministic (or fixed from outside)

Possible extension: “intelligent” search order exploiting additional knowledge
about the model to find counterexamples more quickly.

93

Roots

The unique (w.r.t. a fixed search order) state of an SCC that is visited first during
DFS is called its root.

Remark: Different search orders may lead to different states designated as roots.

94

Example: Search order

4 6

8

7

12 11

10

1

2

3

5

9

Roots shown in blue when using the previous search order.

95

Properties of roots

(2) A root has the smallest DFS number within its SCC.

Proof: obvious

(3) Within each SCC, the root is the last state from which DFS backtracks, and,
at that point, the SCC has been explored completely (i.e., all states and edges
have been considered).

Proof: Suppose the DFS first reaches a root r . At that point, no other state of
the SCC has been visited so far, and all are reachable from r . Therefore, the
DFS will visit all those states (and possibly others) and backtrack from them
before it can backtrack from r .

96

Explored/active Subgraph

At each point during the DFS, let us distinguish two specific subgraphs of B.

The explored graph of B denotes the subgraph containing all visited states
and explored transitions.

We call an SCC of the explored graph(!) active, if the search path contains at
least one of its states (whose DFS call has not yet terminated).

A state is called active if it is part of an active SCC (it is not necessary for the
state itself to be on the search path).

The active graph is the subgraph of the explored graph induced by the active
states.

97

Example: Explored/active subgraph

1

2

3 4

5

s5 s7

s6 s8

s9 s11

s10

Here: explored graph shown in red and black, active SCCs: {1} and {5},
inactive SCCs {2} and {3,4}.

98

Properties of the active graph

(4) An SCC becomes inactive when we backtrack from its root.

Proof: follows from (3).

(5) An inactive SCC of the explored graph is also an SCC of B.

Proof: Follows immediately from (3) and (4).

(6) The roots of the active graph are a subsequence of the search path.

Proof: Follows from (4) because the root of an active SCC must be on the
search path.

99

(7) Let s be an active state and t (where t .num ≤ s.num) the root of its SCC
in the active graph. Then there is no active root u with
t .num < u.num < s.num.

Proof: Assume that such an active root u exists. Since u is active, it is on the
search stack, just like t , see (4). Then, because of (1), we have t →∗ u. As
dfs(u) has not yet terminated and u.num < s.num, s must have been
reached from u, i.e. u →∗ s. Because s, t are in the same SCC, s →∗ t holds.
But then, t , u are in the same SCC and cannot both be its root.

(8) Let s and t be two active states with s.num ≤ t .num. Then s →∗ t .

Let s′, t ′ be the (active) roots for s and t , resp. Because of (7) we have
s′.num ≤ t ′.num, thus because of (1) s′ →∗ t ′, and therefore s →∗ t .

100

Visualization

From the properties we’ve just proved, it follows that the active graph and its
SCCs are always of the following form, at any time during DFS:

s0

search path

trivial SCC with
accepting state

with additional states
SCC of s0

some number i
root labelled with

labelled with numbers
between i and j

some number j
root labelled with

101

Properties of our emptiness-checking algorithm

Run-time linear in |S|+ |δ|.

Explores B using DFS; reports a counterexample as soon as the explored graph
contains one. (*)

For every explored state s the algorithm computes succ(s) only once.

→ saves time because succ is the most expensive operation in practice.

102

Additional memory usage

Stack W with elements of the form (s,C), where

s is the root of an active SCC;

C is the set of state in the SCC of s.

(C may be implemented as a linked list, one additional pointer for each state.)

One bit per state indicating whether a state is active or not.

103

How the algorithm works

Actions of the algorithm:

Initialization

Discovering new edges (to old or new states)

Backtracking

With each action, we

update the contents of W and the “active” bits;

check whether the explored graph contains a counterexample.

104

Initialization

Explored graph consists just of the initial state s0, no edges.

One single element in W : the tuple (s0, {s0})

s0 is active.

105

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 1: t was never seen before:

The explored graph is extended by the state t and the edge s → t .

t is active and forms a trivial SCC within the active graph.

Extend W by (t , {t}).

Recursively start DFS on t .

106

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 2: t has been visited before and is inactive.

If t is inactive, then its SCC has been completely explored, see (3) and (4).
Therefore, s, t must belong to different SCCs, in particular, t →∗ s cannot
hold. Therefore, the edge s → t cannot be part of a lasso, and we can ignore
it.

No recursive call, W and the “active” bits remain unchanged.

107

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 3: t was visited before and is active, and t .num > s.num.

From (8) we already know that s →∗ t holds, therefore the SCCs of the active
graph do not change, and no new counterexample can be generated in this
way. Thus, we ignore the edge.

No recursive call, W and the “active” bits remain unchanged.

108

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 4: t was visited before and t .num = s.num.

Then s = t .

A counterexample has been discovered iff s is accepting.

Otherwise: no recursive call, W and the “active” bits remain unchanged.

109

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 5: t was seen before and is active, t .num < s.num.

Then because of (8) we have t →∗ s. Thus, s, t belong to the same SCC. Let
u, with u.num ≤ t .num, be the root of the SCC to which t belongs. Since s is
the latest element on the search path, it follows from (1) that all SCCs stored
on W from u downwards must be merged into one SCC.

We find u by removing elements from W until we find a root whose number is
no larger than t .num, compare (7).

A new counterexample is generated iff one of the merged SCCs was hitherto
trivial. Therefore, while removing elements from W we simply check whether
any of the roots is an accepting state.

110

Backtracking

Suppose that all elements in succ(s) have been explored.

Case 1: s is a root.

Then s and its entire SCC become inactive, see (4).

Moreover, we remove the topmost element from W .

Case 2: s is not a root.

Then the root of its SCC is still active.

W and the “active” bits remain unchanged.

111

Et voilà. . .

nr = 0; hash = {}; W = {}; dfs(s0); exit;

dfs(s) {
add s to hash; s.active = true;
nr = nr+1; s.num = nr;
push (s,{s}) onto W;
for (t in succ(s)) {

if (t not yet in hash) { dfs(t); }
else if (t.active) {

D = {};
repeat

pop (u,C) from W;
if u is accepting { report success; halt; }
merge C into D;

until u.num <= t.num;
push (u,D) onto W;

} }
if s is the top root in W {

pop (s,C) from W;
for all t in C { t.active = false; }

}
}

112

Remarks on the algorithm

Cases 3 to 5 for handling edges are dealt with uniformly in the repeat-until loop.

The statement report success symbolizes the discovery of a
counterexample.

If dfs(s0) terminates, no counterexample exists.

Run-time linear in number of states plus number of transitions.

113

Example: Execution of the algorithm

1

s4

s5 s7

s6 s8

s9 s11

s10

1

Roots in W:

Situation at the beginning, only s0 explored.

114

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

4321

Roots in W:

Situation after discovering three edges.

115

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

321

Roots in W:

Edge 4→ 3 leads to merger of two SCCs.

116

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

321

Roots in W:

(set component of each entry in W indicated by colours)

117

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

1

Roots in W:

Backtracking makes 2, 3, and 4 inactive (shown in black).

118

Example: Execution of the algorithm

1

2

3 4

5

6 s7

s6 s8

s9 s11

s10

1 5 6

Roots in W:

Edge 6→ 4 is an example of Case 2 and may be ignored.

119

Example: Execution of the algorithm

1

2

3 4

5

6 7

8 s8

s9 s11

s10

1 5 6 7 8

Roots in W:

Situation when reaching 8.

120

Example: Execution of the algorithm

1

2

3 4

5

6 7

8 s8

s9 s11

s10

1 5 6

Roots in W:

Edge 8→ 6 leads to a merger.

121

Example: Execution of the algorithm

1

2

3 4

5

6 7

8 s8

s9 s11

s10

1 5

Roots in W:

Edge 8→ 5: Counterexample discovered because root 5 is accepting.

122

Extension to generalized Büchi automata

Let G be a GBA with n acceptance sets F1, . . . ,Fn.

L(G) is non-empty iff there exists a non-trivial SCC intersecting each set Fi
(1 ≤ i ≤ n).

Let us label each state s with the index set of the acceptance sets it is contained
in, denoted Ms. (E.g., if s in F1 and in F3, but in no other acceptance set, then
Ms = {1,3}.)

We extend W by a third component, an index set, i.e. a subset of {1, . . . , n}.

123

During the algorithm, we uphold the following invariant: if W has an entry
(s,C,M), then M =

⋃
t∈C Mt .

When two SCCs are merged, we take the union of the index sets.

A counterexample is discovered if this leads to an index set {1, . . . , n}.

If n is “small”, the required operations can be implemented using bit vectors
(constant time).

124

Modification for computing SCCs

The algorithm can also be used to partition the BA (or, in fact, any directed
graph) into its SCCs.

For this, we simply omit the acceptance test when merging active SCCs.

The algorithm may output a complete SCC as soon as one backtracks from its
root.

125

