Model-Checking SS 2010 Exercise 8

July 13

Due date: July 20, 9:55am CET.

- 1. Give two generic instances of $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow \alpha$
- 2. Prove or give a counterexample for the following statement:

If τ , τ_1 and τ_2 are types, α and β are distinct type variables, then $[\tau_2/\beta][\tau_1/\alpha]\tau = [\tau_2/\beta, \tau_1/\alpha]\tau$

- 3. For each expression e in the following list:
 - Show how algorithm W computes a well-type of e; show this by constructing a tree of calls to W that reflects the operations performed by W, and by showing how each m.g.u. is computed.
 - Given the well-type τ of e obtained in the last step, construct a derivation of the well-typed judgement $\emptyset \vdash e : \tau$.
 - (a) $\lambda a \lambda b.b a$
 - (b) let $d = \lambda a \lambda b b a$ in $d \ 1 \ 2$
 - (c) λx . if x false true

assume there exists a constant $if: \forall \alpha.bool \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha$

(d) $\lambda m \lambda x \lambda y$. let $d = \lambda a \lambda b.b - a$ in if $_u ((d x y) = 0) (print m)$

assume there exist constants $i\!f_u:bool\to unit\to unit$ and $print:string\to unit$

- (e) $\lambda f.f$ 1
- (f) λx . let $fact = fix \ (\lambda fact \lambda x)$. if $(x \le 0) \ 0 \ (n * (fact(x-1))))$ in fact x

assume there exists a constant $\mathit{fix}: \forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha$

- 4. The following expressions cannot be well-typed. Show how W would attempt to construct a well-type for each expression (i.e. construct a tree of calls to W that reflect the operations performed by W, and show how each m.g.u. is computed) and pinpoint the reason for W's failure.
 - (a) $(\lambda i.ii)(\lambda x.x)$
 - (b) λf .let $x = f \ 1$ in $f \ true$