
Interpolation, Invariant and Ranking Function
Generation

Model Checking (IN2050)

Andrey Rybalchenko

Technische Universität München

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation ρ2 has a guard x + 1 ≤ y.
Furthermore, the failure of the assert statement is represented by reachability of
the control location `5.

1 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

1.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {

x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coefficients of
the occurring variables. Let fx and fy be the coefficients for the variables x and
y, respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let δ0 be the lower bound for the value of the

main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

`1

`2

τ1

τ2

`3

τ3

`4

τ4

`5

τ5

(b)

ρ1 = (y ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z)

ρ3 = (x ≥ y ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ4 = (x ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ5 = (x+ 1 ≤ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

ranking function, and δ by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coefficients
and the bound values.

∃fx ∃fy ∃δ0 ∃δ
∀x ∀y ∀x′ ∀y′ :

(δ ≥ 1 ∧
ρ2 → (fxx+ fyy ≥ δ0 ∧

fxx
′ + fyy

′ ≤ fxx+ fyy − δ))

(1)

Any satisfying assignment to fx, fy, δ0 and δ determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it difficult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

2

below.

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y)

= (x− y ≤ −1 ∧ −x+ x′ ≤ 1 ∧ x− x′ ≤ −1 ∧ −y + y′ ≤ 0 ∧ y − y′ ≤ 0)

=

1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

x
y
x′

y′

 ≤

−1
1
−1
0
0

The bound and decrease conditions from (1) produce the following matrix forms.

fxx+ fyy ≥ δ0 =
(
−fx −fy 0 0

)
x
y
x′

y′

 ≤ −δ0
fxx

′ + fyy
′ ≤ fxx+ fyy − δ =

(
−fx −fy fx fy

)
x
y
x′

y′

 ≤ −δ

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((∃x : Ax ≤ b) ∧ (∀x : Ax ≤ b→ cx ≤ γ))↔ (∃λ : λ ≥ 0 ∧ λA = c ∧ λb ≤ γ) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(∀x : ¬(Ax ≤ b))↔ (∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1) .

3

By applying Farkas’ lemma on (1) we obtain the following constraint.

∃fx ∃fy ∃δ0 ∃δ
∃λ ∃µ :

(δ ≥ 1 ∧
λ ≥ 0 ∧
µ ≥ 0 ∧

λ

1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

 =
(
−fx −fy 0 0

)
∧ λ

−1
1
−1
0
0

 ≤ −δ0 ∧

µ

1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

 =
(
−fx −fy fx fy

)
∧ µ

−1
1
−1
0
0

 ≤ −δ

(2)

This constraint contains only existentially quantified rational variables and con-
sists of linear (in)equalities. Thus, it can be efficiently solved by the existing
tools for Linear Programming over rationals.

Solution We apply a linear constraint solver on (2) and obtain the following
solution.

λ = (1 0 0 0 0)

µ = (0 0 1 1 0)

fx = −1

fy = 1

δ0 = 1

δ = 1

This solution states that the expression −x + y decreases during each iteration
of the loop by at least 1, and is greater than 1 for all states that satisfy the loop
guard.

1.2 Algorithm

Now we briefly summarize the above illustration as an algorithm. See [5] for its
detailed description and pointers to the related work.

The ranking function generation algorithm takes as input a transition relation
ρ(v, v′) given by a set of linear inequalities over the program variables and their
primed versions.

ρ(v, v′) = R

(
v
v′

)
≤ r

4

Then, the condition that a vector of coefficients f for the variables v defines a
linear ranking function is represented by the constraint

∃f ∃δ0 ∃δ ∀v ∀v′ : δ ≥ 1 ∧ ρ(v, v′)→ (fv ≥ δ0 ∧ fv′ ≤ fv − δ) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using off-the-shelf Linear Programming
tools.

∃f ∃δ0 ∃δ
∃λ ∃µ :

δ ≥ 1 ∧
λ ≥ 0 ∧ µ ≥ 0 ∧
λR = (−f 0) ∧ λr ≤ −δ0 ∧
µR = (−f f) ∧ µr ≤ −δ

(4)

2 Interpolation

Interpolants are logical assertions over program states that can separate program
states that satisfy a desired property from the ones that violate the property.
Interpolants play an important role in automated abstraction of sets of program
states and their automatic construction is a crucial building block for program
verification tools. In this section we present an algorithm for the computation of
linear interpolants. A unique feature of our algorithm is the possibility to bias
the outcome using additional constraints.

2.1 Example

In program verification, interpolants are computed for formulas that are ex-
tracted from program paths, i.e., sequences of program statements that follow
the control flow graph of the program. We illustrate the interpolant computation
algorithm using a program path from Figure 1, and refer to [7] for a detailed
description of the algorithm and a discussion of the related work.

Input We consider a path τ1τ3τ5, which corresponds to an execution of the pro-
gram that does not enter the loop and fails the assert statement. This path does
not modify the values of the program variables, but rather imposes a sequence
of conditions y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z. Since this sequence is not satisfiable, a
program verifier can issue an interpolation query that needs to compute a sep-
aration between the states that the program reaches after taking the transition
τ3 and the states that violate the assertion. Formally, we are interested in an

5

inequality ixx+ iyy + izz ≤ i0, called an interpolant, such that

∃ix ∃iy ∃iz ∃i0
∀x ∀y ∀z :

((y ≥ z ∧ x ≥ y)→ ixx+ iyy + izz ≤ i0) ∧
((ixx+ iyy + izz ≤ i0 ∧ x+ 1 ≤ z)→ 0 ≤ −1)

(5)

Furthermore, we require that ixx + iyy + izz ≤ i0 only refers to the variables
that appear both in y ≥ z ∧ x ≥ y and x + 1 ≤ z, which are x and z. Hence,
iz needs to be equal to 0, which is ensured by the above constraint without any
additional effort.

Constraints First we represent the sequence of conditions in matrix form as
follows.

(y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z) =

(−y + z ≤ 0 ∧ −x+ y ≤ 0 ∧ x− z ≤ −1) = 0 −1 1
−1 1 0
1 0 −1

xy
z

 ≤
 0

0
−1

Since (5) contains universal quantification, we apply Farkas’ to enable applica-
bility of Linear Programming tools and obtain the following constraint.

∃ix ∃iy ∃iz ∃i0
∃λ ∃µ :

λ ≥ 0 ∧ µ ≥ 0 ∧

(λ µ)

 0 −1 1
−1 1 0
1 0 −1

 = 0 ∧ (λ µ)

 0
0
−1

 ≤ −1 ∧

(ix iy iz) = λ

(
0 −1 1
−1 1 0

)
∧ i0 = λ

(
0
0

)
(6)

This constraint uses two vectors λ and µ to represent the linear combination
that derives the unsatisfiable inequality 0 ≤ −1. The vector λ tracks the first
two inequalities, and µ tracks the third inequality.

Solution By solving (6) we obtain

λ = (1 1),

µ = 1 ,

ix = −1 ,

iy = 0 ,

iz = 1 ,

i0 = 0 .

The resulting interpolant is −x+ z ≤ 0.

6

2.2 Algorithm

The above example illustrate a constraint-based interpolation algorithm pro-
posed in [7]. We refer to [7] for its detailed description and pointers to the
related work, while the presentation below briefly sketches a simplified version.

Our interpolation algorithm takes as input two sets of linear inequalities,
Av ≤ a and Bv ≤ b, that are mutually unsatisfiable and computes an interpo-
lating inequality iv ≤ i0, which satisfies the following constraint.

∃i ∃i0
∀v :

(Av ≤ a→ iv ≤ i0) ∧
((iv ≤ i0 ∧Bv ≤ b)→ 0 ≤ −1)

(7)

The above formulation yields an existentially quantified linear constraint by
applying Farkas’ lemma. As a result we obtain

∃i ∃i0
∃λ ∃µ :

λ ≥ 0 ∧ µ ≥ 0 ∧(
λ µ
)(A

B

)
= 0 ∧

(
λ µ
)(a

b

)
≤ −1 ∧

i = λA ∧ i0 = λa .

(8)

The constraint-based approach to interpolant computation offers a unique
opportunity to bias the resulting interpolant using additional constraints. That
is, (6) can be extended with an additional constraint C(i

i0) ≤ c that encode the
bias condition.

3 Linear invariants

Invariants are assertions over program variables whose value does not change dur-
ing program execution. In program verification invariants are used to describe
sets of reachable program states, and are an indispensable tool for reasoning
about program correctness. In this section, we show how invariants proving the
non-reachability of the error location in the program can be computed by using
constraint-based techniques, and present a testing-based approach for simpli-
fying the resulting constraint generation task. Furthermore, we briefly present
a close connection between invariant and bound generation. See [4, 3] for the
corresponding algorithms and further details.

3.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location `5, which
serves as the error location.

7

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ≤ p0 and qxx + qyy + qzz ≤ q0 for the locations `2 and `3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location `5. We encode the conditions (1–3) on the unknown invariant coefficients
as the following constraint.

∃px ∃py ∃pz ∃p0 ∃qx ∃qy ∃qz ∃q0
∀x ∀y ∀z ∀x′ ∀y′ ∀z′ :

(ρ1 → pxx
′ + pyy

′ + pzz
′ ≤ p0) ∧

((pxx+ pyy + pzz ≤ p0 ∧ ρ2)→ pxx
′ + pyy

′ + pzz
′ ≤ p0) ∧

((pxx+ pyy + pzz ≤ p0 ∧ ρ3)→ qxx
′ + qyy

′ + qzz
′ ≤ q0) ∧

((qxx+ qyy + qzz ≤ p0 ∧ ρ4)→ 0 ≤ 0) ∧
((qxx+ qyy + qzz ≤ p0 ∧ ρ5)→ 0 ≤ −1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying τ1 on any state leads to a state represented by pxx+pyy+
pzz ≤ p0.

Constraints Since (9) contains universal quantification, we resort to the Farkas’
lemma-based elimination, which yields the following constraint.

∃px ∃py ∃pz ∃p0 ∃qx ∃qy ∃qz ∃q0
∃λ1 ∃λ2 ∃λ3 ∃λ4 ∃λ5 :

λ1 ≥ 0 ∧ · · · ∧ λ5 ≥ 0 ∧
λ1R1 = (0 px py pz) ∧ λ1r1 ≤ p0 ∧

λ2

(
px py pz 0

R2

)
= (0 px py pz) ∧ λ2

(
p0
r2

)
≤ p0 ∧

λ3

(
px py pz 0

R3

)
= (0 qx qy qz) ∧ λ3

(
p0
r3

)
≤ q0 ∧

λ4

(
qx qy qz 0

R4

)
= 0 ∧ λ4

(
q0
r4

)
≤ 0 ∧

λ5

(
qx qy qz 0

R5

)
= 0 ∧ λ5

(
q0
r5

)
≤ −1

(10)

Unfortunately, this constraint is non-linear since it contains multiplication
between unknown components of λ1, . . . , λ5 and the unknown coefficients
px, py, pz, p0, qx, qy, qz, q0.

8

Solution For our program we obtain the following solution.

λ1 = (1 1 1 1)

λ2 = (1 0 1 1 1)

λ3 = (1 1 1 1 1)

λ4 = (0 0 0 0 0)

λ5 = (1 1 0 0 0)

px = 0 py = −1 pz = 1 p0 = 0

qx = −1 qy = 0 qz = 1 q0 = 0

This solution defines an invariant −y+ x ≤ 0 at the location `2 and −x+ z ≤ 0
at the location `3.

3.2 Algorithm

Next, we sketch the constraint-based invariant algorithm. See [2, 1, 4] for further
details and a discussion of related work.

Input The algorithm takes as the first input a program P = (v, pc,L, T , `I , `E)
consists of data variables v, a program counter variable pc, a finite set of control
locations L, a finite set of transitions T , a start location `I ∈ L, and an error
location `E ∈ L. Each transition (`, ρ(v, v′), `′) ∈ T consists of a start location
`, a transition relation ρ(v, v′), and destination location `′ ∈ L.

As the second input, the algorithm takes a template map that assigns to each
control location ` a set of linear inequalities over program variables I`v ≤ i` with
unknown coefficients I` and i`. The goal of the algorithm is to find a valuation
of these coefficients such that the following constraint holds.

∃I`∈L ∃i`∈L

∀v ∀v′ :

(I`I = 0 ∧ i`I = 0) ∧ (I`E = 0 ∧ i`E = −1) ∧
(∀(`, ρ(v, v′), `′) ∈ T :

(I`v ≤ i` ∧ ρ(v, v′))→ I`′v
′ ≤ i`′)

(11)

First this constraint ensures that there is no restriction on the start state of the
programs imposed by the template I`Iv ≤ i`I at the start location `I . Then,
the constraint requires that no execution reaches the error location, i.e., the
corresponding template I`Ev ≤ i`E yields an unsatisfiable set of inequalities. For
each program transition the constraint requires that set of states reachable by
taking this transition is captured by the respective sets of inequalities.

9

Constraints Since the constraint (11) contains universal quantification, we
apply Farkas’ lemma and obtain

∃I`∈L ∃i`∈L

∃Λτ∈T :

(I`I = 0 ∧ i`I = 0) ∧ (I`E = 0 ∧ i`E = −1) ∧
(∀τ = (`, R(vv′) ≤ r, `′) ∈ T :

Λτ ≥ 0 ∧

Λτ

(
I` 0
R

)
= I`′ ∧ Λτ

(
i`
r

)
≤ i`′)

(12)

We observe that the multiplication between Λ` on once side with I` and i`
leads to non-linearity. In theory, the non-linear constraint (10) can be solved
by quantifier elimination procedures over rationals/reals, however in practice
constraints quickly become too difficult for such direct approach.

4 Combination with uninterpreted functions (optional
material)

In the previous sections we showed how auxiliary assertions represented by linear
inequalities can be generated using constraint-based techniques. In this section
we show that these techniques can be directly extended to deal with assertions
represented by linear arithmetic combined with uninterpreted functions. This
combined theory plays in important role in program verification, where uninter-
preted functions are used to abstract functions that too complex to be modeled
precisely. The basis of the extension is the hierarchical approach to the combi-
nation of logical theories [6]. We refer to [7, 1] for constraint-based interpolation
and invariant generation algorithms for the combination of linear arithmetic and
uninterpreted functions. Next, we will illustrate the interpolation algorithm for
linear arithmetic and function symbols using a small example.

Input The interpolation algorithm takes as input a pair of mutually unsatisfi-
able assertions ϕ and ψ shown below.

ϕ = (x ≤ a ∧ a ≤ y ∧ f(a) ≤ 0)

ψ = (y ≤ b ∧ b ≤ x ∧ 1 ≤ f(b))

The proof of unsatisfiability requires reasoning about linear arithmetic and
uninterpreted function, which we represent by the logical consequence rela-
tion |=LI+UIF.

ϕ ∧ ψ |=LI+UIF ⊥

10

The goal of the interpolation algorithm is to construct an assertion χ such
that

ϕ |=LI+UIF χ ,

χ ∧ ψ |=LI+UIF ⊥ ,

χ is expressed over common symbols of ϕ and ψ .

(13)

Constraints and solution As common in reasoning about combined theories,
we first apply a purification step that separates arithmetic constraints from the
function applications as follows.

ϕLI = (x ≤ a ∧ a ≤ y ∧ c ≤ 0)

ψLI = (y ≤ b ∧ b ≤ x ∧ 1 ≤ d)

D = {c 7→ f(a), d 7→ f(b)}
X = {a = b→ c = d}

The sets of inequalities ϕLI and ψLI do not have any function symbols, which
were replaced by fresh variables. The mapping between these fresh variables
and the corresponding function applications is give by the set D. The set X
contains functionality axiom instances that we create for all pairs of occurrences
of function applications. These instances are expressed in linear arithmetic. For
our example there is only one such instance.

The hierarchical reasoning approach guarantees that instances collected in
X are sufficient for proving the mutual unsatisfiability of the pure assertions ϕLI

and ψLI, i.e.,

ϕLI ∧ ψLI ∧
∧
X |=LI ⊥

Unfortunately we cannot apply an algorithm for interpolation in linear arith-
metic on the unsatisfiable conjunction presented above since the axiom instance
in X contains variables that appear both in ϕLI and ψLI, which will lead to an
interpolation result that violates the third condition in 13.

Instead, we resort to a case-based reasoning as follows. First, we attempt to
compute an interpolant by considering the pure assertions, but do not succeed
since they are mutually satisfiable, i.e.,

ϕLI ∧ ψLI 6|=LI ⊥

Nevertheless, the conjunction of pure assertions implies the precondition for
applying the functionality axiom instance from X, i.e.,

ϕLI ∧ ψLI |=LI a = b

From this implication follows that we can compute intermediate terms that are
represented over variables that are common to ϕLI and ψLI. Formally, we have

ϕLI ∧ ψLI |=LI a ≤ y ∧ y ≤ b ,
ϕLI ∧ ψLI |=LI a ≥ x ∧ x ≥ b .

11

We rearrange these implications and obtain the following implications.

ϕLI |=LI x ≤ a ∧ a ≤ y
ψLI |=LI y ≤ b ∧ b ≤ x

These implications are used by our interpolation algorithm to derive appropriate
case reasoning, which will be presented later on. Furthermore, our algorithm
creates an additional function application f(y) together with a corresponding
fresh variable e, which is used for the purification and is recorded in the set D.

D = {c 7→ f(a), d 7→ f(b), e 7→ f(y)}

The first step of the case reasoning requires computing an interpolant for the
following unsatisfiable conjunction.

(ϕLI ∧ a = e) ∧ (ψLI ∧ e = b) |=LI ⊥

By applying the algorithm presented in Section 2 we obtain a partial interpolant
e ≤ 0 such that

ϕLI ∧ a = e |=LI e ≤ 0 ,

e ≤ 0 ∧ ψLI ∧ e = b |=LI ⊥ .

The partial interpolant is completed using the case reasoning information as
follows.

χLI = (x 6= y ∨ (x = y ∧ e ≤ 0))

After replacing the fresh variables by the corresponding function applications
we obtain the following interpolant χ for the original input ϕ and ψ.

χ = (x 6= y ∨ (x = y ∧ e ≤ 0))[f(q)/e]

= x 6= y ∨ (x = y ∧ f(q) ≤ 0)

References

1. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis
for combined theories. In VMCAI, 2007.

2. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV, 2003.

3. B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa, S. Singh, and V. Vafeiadis.
Finding heap-bounds for hardware synthesis. In FMCAD, 2009.

4. A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In TACAS,
2009.

5. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, 2004.

6. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In CADE,
2005.

7. V. Sofronie-Stokkermans and A. Rybalchenko. Constraint solving for interpolation.
J. of Symbolic Computation, 2010. to appear.

12

