Model-Checking Exercises Sommersemester 2009 / Sheet 3

June 10, 2009

We are going to discuss the examples together at 18.6 and 25.6. For questions about the exercises or examples, please send me an email campetel@in.tum.de.

Example 3.1: Translation of LTL to Büchi automata

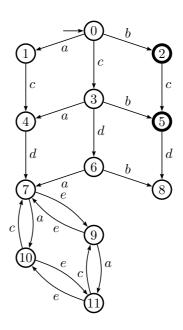
Enter the following **LTL** formulas as possible small Büchi automata (and do not use the construction from the lecture):

- 1. $(\mathbf{G}p) \to (p\mathbf{U}q)$
- 2. $\mathbf{G}(p \to \mathbf{X}(\neg p\mathbf{U}q))$
- 3. $p\mathbf{R}q$

Example 3.2: Ample Sets

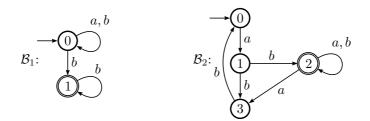
Alongside you see the Kripke structure K with the states $S = \{0, ..., 11\}$, the actions $A = \{a, b, c, d, e\}$, the atomic propositions $\mathbf{AP} = \{p\}$ with $\nu(2) = \nu(5) = \{p\}$ and $\nu(s) = \emptyset$ for all $s \in S \setminus \{2, 5\}$ (the proposition p holds therefore only in thick rimmed states)

- 1. Provide a maximal independence relation $I \subseteq A \times A$ and determine the set of invisible actions.
- 2. Declare a reduced Kripke structure \mathcal{K}_R that is stuttering equivalent to \mathcal{K} . Declare besides for all states $s \in S$ a suitable set red(s) which satisfies the conditions C0 to C3.



Example 3.3: Intersection automata and emptiness

Construct an automaton \mathcal{B} as the intersection of the two below automata \mathcal{B}_1 and \mathcal{B}_2 , so with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$, and check whether the language accepted by \mathcal{B} , $\mathcal{L}(\mathcal{B})$ is empty.



Example 3.4: C1 is difficult to prove

Show, that the verification, whether a set red(s) satisfies the condition C1, is at least so difficult, such as the verification whether a state r is reachable in the corrisponding complete Kripke structure, starting from an initial state s.

Show how an algorithm that verifies C1, may help to decide if holds $s \to^* r$, by declare a kripke structure \mathcal{K}' and an ample set $\operatorname{red}(s)$ for s, that satisfies then the condition C1 precisely, whether $s \to^* r$ holds in \mathcal{K} .