
Model-Checking Exercises

Sommersemester 2009 / Sheet 2

May 6, 2009

We are going to discuss the examples together at 28.5. For questions about
the exercises or examples, please send me an email campetel@in.tum.de.

Example 2.1: More or less behaviors?

Let K1 = (S,→1, r,AP, v) and K2 = (S,→2, r,AP, v) two Kripke structures
with the same states S, the same start state r and the same interpretation v
on the propositions AP. We write now K1 ≤ K2, where the transition relation
→2⊆ S × S allows more behaviors than the transition relation →1⊆ S × S, viz
if holds →1⊆→2. Show that for K1 ≤ K2 holds the following relation for every
LTL formula φ:

K2 |= φ⇒ K1 |= φ

Example 2.2: Token Ring in Spin

A token ring consists of m independent processes, which are arranged in a circle,
so that every process has exactly one left and right neighbor. The processes in
the Token Ring use a token (best represented by a message in a channel) to
be synchronized. After each calculation step, the token is passed to one of the
neighbors. A process may only be in the critical section, if it has the token.

1. Implement a token ring in Promela with m = 4, where the token is passed
non-deterministically to a Neighbors of the two. Simulate the token ring
interactively.

2. Use SPIN to verify that at any given time no more than one process is in
the critical section.

3. Use SPIN to verify that at least a process infinitely often occurs in the
critical section.

4. Repeat the above steps for a deterministic model, where the token is passed
always to the left.

5. Use SPIN to the deterministic and non-deterministic variant to verify
whether every process infinitely often in the critical section comes.

Note: Use a Promela process type to model the Token Ring processes:

1

proctype process (chan left; chan right)

This process receives as a parameter one channel for the left and right neigh-
bors. Then start four processes of this type in the init process using

run process (t1, t2);
run process (t2, t3);
run process (t3, t4);
run process (t4, t1)

whereas declare the channels using

mtype {
TOKEN
}

chan t1 = [1] of {mtype}
chan t2 = [1] of {mtype}
chan t3 = [1] of {mtype}
chan t4 = [1] of {mtype}

Example 2.3: Non-determinism in Büchi Automata

Show that non deterministic Büchi automata are strict more expressive than
deterministic Büchi automata.

1. Let L ⊆ Σω the language over the alphabet Σ = {a, b}, which the words
contain finite many b-s:

L = {σ ∈ Σω | #b(σ) <∞}

Provide a non-deterministic Büchi automata, which accepts L.

2. Show that there is no deterministic Büchi automata, which accepts L.
Note: Assume, there would be a such automa B with k states, and consider
the accepting run for the word w0 = aω (the automaton must accept the
word). Now add after the first accepting state of this run a b to get a
word w1 : If the automata after reading the prefix al1 for the first time
passes over an accept state, compose in w1 = al1baω. Note that holds
w1 ∈ L. What property must the state satisfy after is reached the reading
of the prefix al1b? And how can you use this property in order to deduce
a contradiction from a concatenation of words w0, . . . , wk+1?

2

