Model-Checking Exercises Sommersemester 2009 / Sheet 1

April 23, 2009

We are going to discuss the examples together at 7.5 and 14.5. For questions about the exercises or examples, please send me an email campetel@in.tum.de.

Example 1.1: LTL Specifications

Find suitable atomic propositions and specify the following properties in LTL:

- 1. The process will terminate.
- 2. The process satisfies a certain invariant.
- 3. The process sends infinitely many messages.
- 4. Each request is eventually answered by an acknowledge.
- 5. After the process is terminated, it sends no messages.
- 6. The static initialization fiasco in C++: Before entering in the *main* routine no thread will be generated.

Specify for each of the above properties one fulfilling and non-fulfilling sequence. For which properties there are finite/infinite fulfilling/non-fulfilling sequences? How do appropriate Kripke structures look like?

Example 1.2: Further Temporal Operators

In the lecture were introduced the following:

- Globally: $w \models \mathbf{G}\phi \Leftrightarrow w \models \neg(\mathbf{true } \mathbf{U} \neg \phi)$
- Release: $w \models \phi \mathbf{R} \psi \Leftrightarrow w \models \neg (\neg \phi \mathbf{U} \neg \psi)$

Let $\Sigma = 2^{\mathbf{AP}}$ with $AP \neq \emptyset$, then write a word $w \in \Sigma^{\omega}$ where $w = w_0 w_1 \dots$ and define the *i*-th suffix w^i with $w^i = w_i w_{i+1} \dots$ Show the following

- 1. $w \models \mathbf{G}\phi \iff \forall i \in \mathbb{N} \ w^i \models \phi$
- 2. $w \models \phi \mathbf{R} \psi \Leftrightarrow \forall i \in \mathbb{N} (\forall j < i \ w^j \not\models \phi) \rightarrow w^i \models \psi$
- 3. $w \models \neg(\phi \mathbf{U} \psi) \Leftrightarrow w \models \neg\phi \mathbf{R} \neg \psi$
- 4. $w \models \phi \mathbf{U} \psi \Leftrightarrow w \models \psi \lor (\phi \land \mathbf{X}(\phi \mathbf{U} \psi))$
- 5. $w \models \phi \mathbf{R} \psi \Leftrightarrow w \models \mathbf{G} \psi \lor (\psi \mathbf{U} (\phi \land \psi))$

Example 1.3: Positive Normal Form

A formula ϕ over the propositions **AP** is in *positive Normal Form* if negation sign \neg happens in ϕ only directly in front of the propositions $a \in \mathbf{AP}$. For example $\neg \mathbf{G}a$ is not in a positive Normal Form, whereas the equivalent formula **true** $\mathbf{U}\neg a$ is in positive Normal Form. We denote the set of positive Normal Form formulas on the operators $\mathbf{X}, \mathbf{U}, \mathbf{G}, \lor, \land$ and \neg as $\mathbf{NF} - \mathbf{LTL}$.

- 1. Show by induction on formula structure, that for any LTL formula ϕ exists an equivalent NF LTL. Use for this task the equivalences from the exercise 1.2.
- 2. Let $\mathbf{NF} \mathbf{LTL}_{\mathbf{G}}$ the set of all $\mathbf{NF} \mathbf{LTL}$ formulas, where the operator \mathbf{G} doesn't occur. Show for any formula $\phi \in \mathbf{NF} \mathbf{LTL}_{\mathbf{G}}$ by induction on the Formula structure, that exists for every word $w = w_0 w_1 \ldots \in \Sigma^{\omega}$ with $w \models \phi$ a number $N_{\phi}(w) \in \mathbb{N}$, so that already decides with the first $N_{\phi}(w) + 1$ symbols $w_0 \ldots w_{N_{\phi}(w)}$ of this word whether $w \models \phi$ holds or not. In other words, for any sequel $w' \in \Sigma^{\omega}$ hold

$$w \models \phi \Leftrightarrow w_0 \dots w_{N_{\phi}(w)} w' \models \phi$$

3. Let $\mathbf{NF} - \mathbf{LTL}_{\mathbf{X}}$ the set of all \mathbf{LTL} formulas, where the operator \mathbf{X} doesn't occur. Show that a formula $\phi \in \mathbf{NF} - \mathbf{LTL}_{\mathbf{X}}$ cannot be distinguished between $w = w_0 w_1 \dots \in \Sigma^{\omega}$ and $D(w) = w_0 w_0 w_1 w_1 \dots$, viz

 $w \models \phi \Leftrightarrow D(w) \models \phi$

hold for all $\phi \in \mathbf{NF} - \mathbf{LTL}_{\mathbf{X}}$ and $w \in \Sigma^{\omega}$.