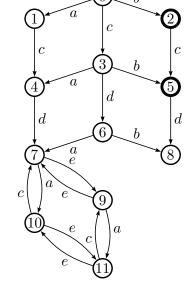
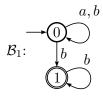
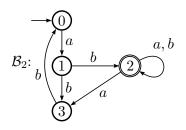
Übungen zu Model-Checking


Sommersemester 2008 / Blatt 3

Wir besprechen die Beispiele gemeinsam am 12.6. Bei Fragen zum Übungsbetrieb oder den Beispielen, schicken Sie mir bitte eine email (schalla@in.tum.de).

Beispiel 3.1: Ample Sets


Nebenstehend sehen Sie die Kripkestruktur \mathcal{K} mit den Zuständen $S = \{0, \dots, 11\}$, den Aktionen $A = \{a, b, c, d, e\}$, der atomaren Proposition $\mathbf{AP} = \{p\}$ mit $\nu(2) = \nu(5) = \{p\}$ und $\nu(s) = \emptyset$ für alle $s \in S \setminus \{2, 5\}$ (die Proposition p gilt also nur in dick umrandeten Zuständen).


- a. Stellen Sie eine maximale Unabhängigkeitsrelation $I\subseteq A\times A$ und bestimmen Sie die Menge der unsichtbaren Aktionen.
- b. Geben Sie eine reduzierte Kripkestruktur \mathcal{K}_R an, die stotteräquivalent zu \mathcal{K} ist. Geben Sie dazu für alle Zustände $s \in S$ eine passende Menge $\operatorname{red}(s)$ an, die den Bedingungen C0 bis C3 genügen.

Beispiel 3.2: Automatenschnitt und Leerheit

Konstruieren Sie einen Automaten \mathcal{B} als Schnitt der beiden untenstehenden Automaten \mathcal{B}_1 und \mathcal{B}_2 , also mit $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$, und überprüfen Sie, ob die von \mathcal{B} akzeptierte Sprache $\mathcal{L}(\mathcal{B})$ leer ist.

Beispiel 3.3: C1 ist schwer zu prüfen

Zeigen Sie, dass die Überprüfung, ob eine Menge $\operatorname{red}(s)$ die Bedingung C1 erfüllt, zumindest so schwer ist, wie die Überprüfung, ob ein Zustand r ausgehend von einem Anfangszustand s in der entsprechenden vollen Kripkestruktur erreichbar ist.

Zeigen Sie dafür, wie sie einen Algorithmus, der C1 überprüft, nützen können, um zu entscheiden ob $s \to^* r$ gilt, indem sie eine Kripkestruktur \mathcal{K}' angeben und ein ample set $\mathsf{red}(s)$ für s angeben, das die Bedingung C1 genau dann erfüllt, wenn $s \to^* r$ in \mathcal{K} gilt.