
Logic in Automatic Verification

Javier Esparza

Sofware Reliability and Security Group

Institute for Formal Methods in Computer Science

University of Stuttgart

Many thanks to Abdelwaheb Ayari, David Basin,
Armin Biere, Paul Gastin and Denis Oddoux

1

Automatic verification

The dream:

feed a machine with a system and a specification

push a button

get ‘yes’ or ‘no, because . . . ’

In this talk: three small examples of application of decision procedures for logics
to this problem

SAT / QBF

Temporal logics

Monadic second order logics

2

Verifying adders with boolean logic

Modelling circuits with QBL

Gates as boolean formulas

Stable states as satisfying truth assignments

a b

not

a
b c

or

ca
b

xor

a
b c

and

not (a, b) ≡ ¬a ↔ b and(a, b, c) ≡ (a ∧ b) ↔ c

or(a, b, c) ≡ (a ∨ b) ↔ c xor (a, b, c) ≡ ((¬a ∧ b) ∨ (a ∧ ¬b)) ↔ c

3

Combine gates with ∧, ∃ (and renaming of variables)

R1 R2

R

w

b

q sr

x y

a a

c

c
b

dd

R(x , y , q, r , s) = ∃w .R1(x , y ,w , q) ∧ R2(y ,w , r , s)

4

A full adder

cout cin . . .

. . . a . . .

+ . . . b . . .

. . . s . . .

w1

w2

w3

a
b

cout
cin

s

full adder (a, b, s, cin, cout) ≡
∃w1,w2,w3. xor (a, b,w1) ∧ xor (w1, cin, out) ∧ and(a, b,w2) ∧

and(cin,w1,w3) ∧ or(w3,w2, cout)

5

An n-bit ripple-carry adder

c2 c1 cin (= 0)

a2 a1 a0

+ b2 b1 b0

cout s2 s1 s0

Wire together n 1-bit adders where i th carry-out is i+1st carry-in, first carry is the
carry-in and last is the carry-out.

cin
adder adder addercout

b2 a2 b1 a1 b0 a0

s0s1s2

c0c2 c1

6

We obtain the formula

adder n(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout) ≡
∃c0, . . . , cn. (c0 ↔ cin) ∧ (cn ↔ cout) ∧

n−1∧
i=1

full adder (ai , bi , si , ci , ci+1))

Problem: too slow!!

Each ci can only be computed after all of ci−1, . . . , c0 have been computed

Delay: 2n + 2 time units for n-bit numbers

7

A carry-look-ahead n-adder

Compute all of cn−1, . . . , c0 (and cout) concurrently

First step: given an−1 . . . a0 and bn−1 . . . b0, identify the i ∈ [0, n − 1] that are

– Generating: ci+1 ≡ 1 independently of ci .
These are the positions such that 1 = gi ≡ and(ai , bi).

– Propagating: ci+1 ≡ ci , i.e., ci is ‘propagated’ to ci+1.
These are the positions such that 1 = pi ≡ xor (ai , bi)

Observe: all gi , pi can be computed simultaneously

Second step: compute the ci ’s by

ci ≡ gi ∨ (pi ∧ gi−1) ∨ (pi ∧ pi−1 ∧ gi−2) ∨ . . . ∨ (pi ∧ pi−1 ∧ . . . ∧ g0)

Logarithmic delay in n using balanced ∨-trees and ∧-trees

Delay depends on tree structure. For 64 bits: 23-56 units (instead of 130)

8

Description of the circuit

9

Description of the circuit II

F1 F2 E1 E2

BAS

LeafCell circuit

x 2
x 1

y1

y2

1 z 2z

⊕
circuit

1
0EF2

0F1
0 E2

0 F1
1 F2

1 E1
1 E2

1

E1 E2F1 F2

NodeCell circuit

E1 E2F1 F2

cout
cin

RootCell circuit

10

Verification of the carry-look-ahead n-adder

Check if

adder n(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout)

⇔
clan(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout)

Use SAT solvers or QBF solvers

Results of the SAT 2002 competition on a variant of this problem:

– Task was to compare 2, 4, 8, . . . , 256 bits adders (8 problems)

– From 26 variables and 70 3CNF clauses to 4584 variables and 13226 clauses

– Fastest solver (Zchaff) checked all 8 problems in 14 seconds

– More info at www.satlive.org/SATCompetition/2002/index.jsp

Rule-of-thumb: circuits with some hundreds of gates are routinedly solved

11

Verifying mutual exclusion algorithms

with propositional temporal logics

The mutual exclusion problem

The setting:

Two computers connected to a database (e.g., of plane bookings)

Can communicate with each other through shared variables (i.e., variables
that both can read and write)

Both computers run a program having a critical section, from which the
program can update the database records

The problem: design the program run by the computers so that

At any time, at most one computer can be in the critical section

If a computer wishes to enter the critical section, it eventually will

These properties still hold if any of the computers breaks down in the
non-critical section

Observe: not an input/output system!

12

A solution due to Peterson

var flag[0], flag[1] : {true , false } init false ;
var turn : {0,1};

while true do
s0 non-critical section
s1 flag[0] := true ;
s2 turn := 1;
s3 while (flag[1] and turn=1) skip ;
s4 critical section
s5 flag[0] := false ;
od

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while true do
r0 non-critical section
r1 flag[1] := true ;
r2 turn := 0;
r3 while (flag[0] and turn=0) skip ;
r4 critical section
r5 flag[1] := false ;
od

13

Linear-time temporal logic (LTL)

Built on top of a set AP of atomic propositions

World: valuation of the atomic propositions over {true, false}

Formulas of LTL interpreted over runs: infinite sequences of worlds

Notation:
run ρ = ρ0ρ1ρ2 . . .

suffix ρ|i = ρiρi+1ρi+2 . . .

14

Type Formula ρ |= ϕ iff . . . Intuition

atomic p p is true at ρ0 p holds now

boolean ¬ϕ ρ 6|= ϕ

ϕ ∨ ψ ρ |= ϕ or ρ |= ψ

temporal Xϕ ρ|1 |= ϕ ϕ holds next

Fϕ ρ|i |= ϕ for some i ∈ N eventually ϕ

Gϕ ρ|i |= ϕ for all i ∈ N always ϕ

ϕ U ψ there is i ∈ N such that ρ|i |= ψ

and ρ|j |= ϕ for all 0 ≤ j < i ϕ until ψ

15

Application to the mutex algorithm

Atomic propositions: flag[0] = true , at s4 , . . .

The program satisfies a property if all its runs (executions) satisfy it

The mutual exclusion property:

G(¬at s4 ∨ ¬at r4)

If computer 0 wants to enter the critical section, it eventually will:

G(flag[0] = true ⇒ F at s4)

But this property does not take breakdowns out of the non-critical section into
account . . .

16

Dealing with breakdowns

Introduce propositions last 0, last 1 saying which computer did the last step

No breakdowns for computer 0:

GF last 0

No breakdowns for computer 0 but possibly in the non-critical section:

GF last 0 ∨ FG at s0

The final property to be checked:

(GF last 0 ∨ FG at s0) ∧ (GF last 1 ∨ FG at r0)

=⇒
G(flag[0] = true ⇒ F at r4) ∧G(flag[1] = true ⇒ F at s4)

17

Automatic verification

The model-checking problem: whether all runs of the algorithm satisfy a given
LTL formula

Can be algorithmically solved in three steps (Vardi, Wolper 85):

Construct a Büchi automaton for the negation of the formula
(decision procedure for satisfiability)

Construct the product of this automaton and the state space of the system

Check emptyness of the product

Linear complexity in the number of states of the program, exponential complexity
in the size of the formula

Formula verified in less than one second with Holzmann’s SPIN checker
(http://spinroot.com/)

18

Automaton for the formula

LTL2BA by Gastin and Oddoux (www.liafa.jussieu.fr/ oddoux/ltl2ba/)

19

Quite sophisticated: formula → alternating Büchi → generalized Büchi → Büchi,
with simplification heuristics at each step

The automaton for the negation of the formula has 36 states

Verifying parameterized adders

with monadic second order logics

WS1S : weak MSO logic of one successor

First order variables p, q, . . . interpreted over N

Second-order variables X ,Y , . . . interpreted over finite subsets of N

φ ::= p = s(q) | p ∈ X | ¬φ | φ ∨ φ | ∃p. φ | ∃X . φ

20

Definitions (Sample)

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2)

∀p. φ ≡ ¬∃p.¬φ

X(p) ≡ p ∈ X

X(0) ≡ ∃p. (∀q. p 6= s(q)) ∧ X(p)

X(p + n) ≡ ∃p1, . . . , pn. p1 = s(p) ∧ . . . ∧ pn = s(pn−1) ∧ X(pn)

x = y ≡ ∀X .X(x) ↔ X(y)

x ≤ y ≡ ∀X . (X(y) ∧ ∀z, w . (X(z) ∧ s(w) = z → X(w)) → X(x))

x < y ≡ x ≤ y ∧ ¬(x = y)

21

WS1S as a logic of binary strings

Second-order variables interpreted as strings over {0,1}

First-order variables interpreted as positions in the string

‘X(p) holds iff string X has a 1 at position p’

Formula φ with free variables determines a language L(φ)

1101 ∈ L(X(1) ∧ X(3)) 1011 6∈ L(X(1) ∧ X(3))

n free variables in φ determine language over {0,1}n

∀p. p < 4 → (X(p) ↔ ¬Y(p))

X 0 1 1 0

Y 1 0 0 1
∈ L(φ) and

X 0 1 1

Y 0 0 0
/∈ L(φ)

22

Examples

∃p, q. p 6= q ∧ X(p) ∧ X(q)

– X is a string with a 1 in at least 2 positions, e.g., 010100

∃p. (∀q. p 6= s(q)) ∧ X(p)

– X is a string whose initial letter is 1

∀p.X(p) ↔ Y(s(p))

– Y is X ‘right-shifted’ 1 position, e.g.,
0 1 1 0

0 0 1 1

23

Well-known results

Satisfiability of WS1S is decidable in non-elementary time
(each quantifier alternation adds one exponential)

The language L(φ) is regular

A finite automaton accepting L(φ) can be computed directly from φ

24

Modelling the family of ALL ripple-carry adders

Recall the formula for a ripple carry n-adder

adder n(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout) ≡
∃c0, . . . , cn. (c0 ↔ cin) ∧ (cn ↔ cout) ∧

n−1∧
i=0

full adder (ai , bi , si , ci , ci+1)

We construct the WS1S formula

adder (n,A,B,S, cin, cout) ≡
∃C. (C(0) ↔ cin) ∧ (C(n) ↔ cout) ∧

∀p. p < n → full adder (A(p),B(p),S(p),C(p),C(p + 1)) ∧
∀p. p ≥ n → (¬A(p) ∧ ¬B(p) ∧ ¬S(p))

25

A model of adder (A,B,S, cin, cout)

0 1 2 3 4 5

A 1 1 1 0 0 0 . . . 7

B 1 0 0 1 0 0 . . . 9

S 0 0 0 0 1 0 . . . 16

n = 4

cin = 0

cout = 0

The set of models of adder is ‘the union’ of all the sets of models of adder n

26

WS2S : weak MSO logic of two successors

Seen as a logic over binary trees

Second-order variables interpreted as trees over {0,1}

First-order variables interpreted as positions (nodes) in the tree

Example:

X(ε) ∧ (∀p.X(s0(p)) ↔ X(s1(p))) ∧ ∀p.¬Y(s0(p)) ∨ ¬Y(s1(p))

‘X contains the root node ε, and
a node p is in X iff its brother is also in X , and
for any node p, Y contains at most one of p’s successors’

27

Models

A model of a formula with n free variables is a ‘superposition’ of trees over B, i.e.,
a tree whose nodes are labelled with elements of {0,1}n

The tree
1
0

1
1

1
1

1
0

1
0

0
0

0
1

is a model of

X(ε) ∧ (∀p.X(s0(p)) ↔ X(s1(p))) ∧ ∀p.¬Y(s0(p)) ∨ ¬Y(s1(p))

28

Modelling the family of ALL carry-look-ahead adders

29

The family can be modelled by the formula

cla(A,B,S, cin, cout) ≡ ∃T ,E1,E2,F1,F2

RootCell(F1,F2,E1,E2, cin, cout) ∧
(∀p.(leaf(p,T) → LeafCell(A,B,S,F1,F2,E1,E2, p)) ∧

(node(p,T) → NodeCell(F1,F2,E1,E2, p))) ∧
shape cond(A,B,S,T)

30

Verification of a parameterized cla-adder

Check validity of

∀A,B,S, cin, cout . adder (A,B,S, cin, cout) ⇔ cla(A,B,S, cin, cout)

(Requires to embed WS1S into WS2S)

Checked in 1 second by MONA (Mona at www.brics.dk/ mona)

Restrictions:

– only array or tree structures

– only one parameter (two parameters → quantification on binary relations)

31

Conclusions

: no conclusions, just examples!

32

Conclusions

No conclusions, just examples!

33

