Resolution (Idee)

Mengendarstellung

 $(F \vee A) \wedge (F' \vee \neg A) \equiv (F \vee A) \wedge (F' \vee \neg A) \wedge (F \vee F')$

Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit.

Zwei Fragen:

- Kann man aus einer unerfüllbaren Formel immer die leere Klausel herleiten? (Vollständigkeit)
- Gibt es eine Möglichkeit, die Herleitung kompakter aufzuschreiben?

• Klausel: Menge von Literalen (Disjunktion).

$$\{A,B\}$$
 stellt $(A \vee B)$ dar.

• Formel: Menge von Klauseln (Konjunktion).

$$\{\{A,B\},\{\neg A,B\}\}$$
 stellt $((A\vee B)\wedge(\neg A\vee B))$ dar.

Die leere Klausel (= leere Disjunktion) ist äquivalent zu einer unerfüllbaren Formel. Diese wird auch mit □ bezeichnet.

Die leere Formel (= leere Konjunktion) ist äquivalent zu einer gültigen Formel.

1/14

2/14

Vorteile der Mengendarstellung

Resolvent (I)

Man erhält automatisch:

- Kommutativität: $(A \lor B) \equiv (B \lor A)$, beide dargestellt durch $\{A, B\}$
- Assoziativität: $((A \lor B) \lor C) \equiv (A \lor (B \lor C)),$ beide dargestellt durch $\{A, B, C\}$
- Idempotenz: $(A \lor A) \equiv A$, beide dargestellt durch $\{A\}$

Definition: Seien K_1 , K_2 und R Klauseln. Dann heißt R *Resolvent* von K_1 und K_2 , falls es ein Literal L gibt mit $L \in K_1$ und $\overline{L} \in K_2$ und R die Form hat:

$$R = (K_1 - \{L\}) \cup (K_2 - \{\overline{L}\}).$$

Hierbei ist \overline{L} definiert als

$$\overline{L} = \left\{ \begin{array}{ll} \neg A_i & \text{falls } L = A_i, \\ A_i & \text{falls } L = \neg A_i \end{array} \right.$$

A

Resolvent (II)

Resolutions-Lemma

Wir stellen diesen Sachverhalt durch folgendes Diagramm dar (Sprechweise: R wird aus K_1 , K_2 nach L resolviert).

Ferner: falls $K_1 = \{L\}$ und $K_2 = \{\overline{L}\}$, so entsteht die leere Menge als Resolvent. Diese wird mit dem speziellen Symbol \square bezeichnet, das eine unerfüllbare Formel darstellt.

Resolutions-Lemma: Sei F eine Formel in **KNF**, dargestellt als Klauselmenge. Ferner sei R ein Resolvent zweier Klauseln K_1 und K_2 in F. Dann sind F und $F \cup \{R\}$ äquivalent.

Beweis: Folgt direkt aus

$$\underbrace{(F_1 \vee A)}_{K_1} \wedge \underbrace{(F_2 \vee \neg A)}_{K_2} \equiv \underbrace{(F_1 \vee A)}_{K_1} \wedge \underbrace{(F_2 \vee \neg A)}_{K_2} \wedge \underbrace{(F_1 \vee F_2)}_{R}$$

5/14

6/14

Definition von Res(F)

Aufgabe

Definition: Sei F eine Klauselmenge. Dann ist Res(F) definiert als $Res(F) = F \cup \{R \mid R \text{ ist Resolvent zweier Klauseln in } F\}.$ Außerdem setzen wir:

$$Res^{0}(F) = F$$

 $Res^{n+1}(F) = Res(Res^{n}(F))$ für $n \ge 0$

und schließlich sei

$$Res^*(F) = \bigcup_{n \ge 0} Res^n(F).$$

Angenommen, die Formel F enthält n atomare Formeln. Dann gilt für $Res^*(F)$:

A
$$|Res^*(F)| \le 2^n$$
 B $|Res^*(F)| \le 4^n$

 \mathbf{C} $|Res^*(F)|$ kann beliebig groß werden

Dabei bezeichnet $|Res^*(F)|$ die Anzahl der Elemente in $Res^*(F)$.

-/--

0/14

Resolutionssatz

Beweisidee (I)

Wir zeigen nun die Vollständigkeit der Resolution:

Resolutionssatz (der Aussagenlogik):

Eine Klauselmenge F ist unerfüllbar genau dann, wenn $\square \in Res^*(F)$.

Induktion über die Anzahl der atomaren Formeln.

Hier: Induktionsschritt mit n+1=4

$$F = \{\{A_1\}, \{\neg A_2, A_4\}, \{\neg A_1, A_2, A_4\}, \{A_3, \neg A_4\}, \{\neg A_1, \neg A_3, \neg A_4\}\}$$

9/14

10/14

Beweisidee (I)

Beweisidee (I)

Induktion über die Anzahl der atomaren Formeln.

Hier: Induktionsschritt mit n+1=4

$$F = \{\{A_1\}, \{\neg A_2, X_4\}, \{\neg A_1, A_2, X_4\}, \{A_3, A_4\}, \{\neg A_1, A_3, \neg A_4\}\}$$

$$F_0 = \{\{A_1\}, \{\neg A_2\}, \{\neg A_1, A_2\}\}$$

Induktion über die Anzahl der atomaren Formeln.

Hier: Induktionsschritt mit n+1=4

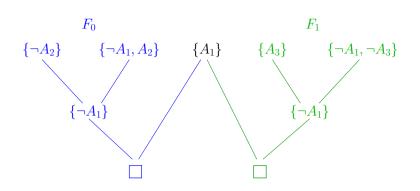
$$F = \{\{A_1\}, \{\neg A_2, A_4\}, \{\neg A_1, A_2, A_4\}, \{A_3, \neg A_4\}, \{\neg A_1, \neg A_3, \neg A_4\}\}$$

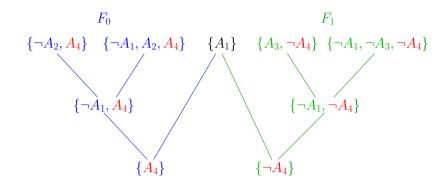
$$F_0 = \{\{A_1\}, \{\neg A_2\}, \{\neg A_1, A_2\}\}\$$

$$F_1 = \{\{A_1\}, \{A_3\}, \{\neg A_1, \neg A_3\}\}$$

Beweisidee (II)

Beweisidee (II)



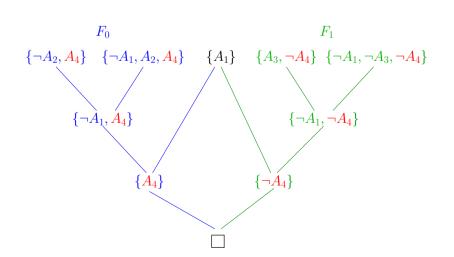


11/14

11/14

Beweisidee (II)

Definition



Eine *Deduktion* (oder *Herleitung* oder *Beweis*) der leeren Klausel aus einer Klauselmenge F ist eine Folge von K_1, K_2, \ldots, K_m von Klauseln mit folgenden Eigenschaften:

 K_m ist die leere Klausel und für jedes $i=1,\ldots,m$ gilt, daß K_i entweder Element von F ist oder aus gewissen Klauseln K_a,K_b mit a,b< i resolviert werden kann.

Eine Klauselmenge ist unerfüllbar genau dann, wenn eine Deduktion der leeren Klausel existiert.

Resolutionskalkül

Beispiel

Mit dem Begriff *Kalkül* bezeichnet man eine Menge von *syntaktischen* Umformungsregeln, mit denen man *semantische* Eigenschaften herleiten kann.

- Syntaktische Umformungsregeln: Resolution, Stopp bei Erreichen der leeren Klausel
- Semantische Eigenschaft: Unerfüllbarkeit

Wünschenswerte Eigenschaften eines Kalküls:

- Korrektheit: Wenn die leere Klausel aus F abgeleitet werden kann, dann ist F unerfüllbar.
- Vollständigkeit: Wenn F unerfüllbar ist, dann ist die leere Klausel aus F ableitbar.

Wir wollen zeigen, daß

13/14

$$((AK \lor BK) \land (AK \to BK) \land (BK \land RL \to \neg AK) \land RL) \to (\neg AK \land BK)$$

gültig ist. Das ist genau dann der Fall, wenn

$$(AK \lor BK) \land (\neg AK \lor BK) \land (\neg BK \lor \neg RL \lor \neg AK) \land RL \land (AK \lor \neg BK)$$

unerfüllbar ist. (Wegen: $F \to G$ gültig gdw. $F \land \neg G$ unerfüllbar.)

14/14