Undecidability of the validity problem

We prove the undecidability of the validity problem for formulas of predicate logic with equality.

Recall: there is an algorithm that given a formula of predicate logic with equality returns a sat-equivalent formula of predicate logic (without equality).

It follows the validity problem for formulas of predicate logic without equality is also undecidable.

Goto-programs

The proof is by reduction from the halting problem for goto-programs.

$$Prog ::= \ell : Assign \qquad \qquad (assignment)$$
 $\ell : \mathbf{goto} \ \ell' \qquad \qquad (unconditional jump)$ $\ell : \mathbf{if} \ x_i = 0 \ \mathbf{then} \ \mathbf{goto} \ \ell' \qquad (conditional jump)$ $\ell : \mathbf{halt} \qquad (termination)$ $Prog \ ; \ Prog \qquad (concatenation)$ $Assign ::= x_i := 0 \mid x_i := x_j \qquad \qquad x_i := x_j + 1 \mid x_i := x_j - 1$ $\ell ::= 1 \mid 2 \mid 3 \mid \dots$

Example

```
1: if x_1 = 0 then goto 4;
2: x_1 := x_1 - 1;
3: goto 1;
```

4: halt

Claim: goto-programs can simulate any program.

By the claim: a problem is decidable if it is solved by some goto-program.

We prove the following two theorems:

Theorem: The halting problem for goto-programs is undecidable: There is no (goto-)program that takes as input a goto-program P and a valuation β of the variables of P and decides whether P initialized with β terminates.

Theorem: If the validity problem for predicate logic is decidable, then the halting problem for goto-programs is decidable.

Coding

Fact: Programs and valuations can be encoded as integers.

Notations:

- $P(a_1, \ldots, a_i)$ denotes the Program P initialized with $(a_1, \ldots, a_i, 0, \ldots, 0)$. I.e., variables x_1, \ldots, x_i are initialized with a_1, \ldots, a_i and variables x_{i+1}, \ldots, x_n with 0.
- Π_n denotes the program with code number n (if the program exists).

Computable encodings

Fact: There exist computable encodings, i.e., encodings for which the following programs exist:

• Encoder.

Input: a program P.

Output: the code of P, i.e., the number n such that $P = \Pi_n$.

• Decoder.

Input: a number n.

Output: the program Π_n if n encodes a program, otherwise 'Not a program'.

Assumption: There is a program T such that for every pair $n, m \in \mathbb{N}$ the initialized program T(n,m) halts and reports

Not a program if n is not the code of a program

Yes if n is the code of a program and

 $\Pi_n(m)$ halts

No if n is the code of a program and $\Pi_n(m)$ does not halt

We show that this assumption leads to a contradiction.

The contradiction

Fact: The asumption implies the existence of a program T' such that for every $n \in \mathbb{N}$ the initialized program T'(n)

halts if n is the code of a program and

 $\Pi_n(n)$ does not halt

does not halt if n is not the code of a program or

 $\Pi_n(n)$ halts

Let k be the code of T', i.e., $\Pi_k = T'$. Either the initialized program T'(k) halts, or it does not halt. But:

$$T'(k)$$
 halts

 \Rightarrow k is the code of a program and

$$\Pi_k(k)$$
 does not halt (Def. of T')

$$\Rightarrow$$
 $T'(k)$ does not halt $(\Pi_k = T')$

$$T'(k)$$
 does not halt

$$\Rightarrow \Pi_k(k)$$
 halts (Def. von T' , k is code)

$$\Rightarrow$$
 $T'(k)$ halts $(\Pi_k = T')$

So the assumption is false.

Undecidability of the validity problem

We assign to every program P and valuation β a formula $\phi_{P\beta}$ of predicate logic with equality such that

 $\phi_{P\beta}$ is valid

if and only if

P with initialization β halts

There is a program that on input P, β outputs $\phi_{P\beta}$.

So no program can solve the validity problem.

Notations and definitions

Let k denote the number of instructions of P. (The last instruction is always halt.)

Let n denote the number of variables of P. (I.e., the variables of P are x_1, \ldots, x_n .)

A configuration of P is a tuple $(pc, m_1, \ldots, m_n) \in \mathbb{N}^{n+1}$. pc is the current value of the program counter and m_1, \ldots, m_n the current valuation of the variables.

Convention: the successor of a configuration $(\ell_k, m_1, \ldots, m_n)$ is again $(\ell_k, m_1, \ldots, m_n)$.

Symbols of the formula $\phi_{P\beta}$

- R, predicate symbol of arity (n+2).
- \bullet <, predicate symbol of arity 2.
- f, function symbol of arity 1.
- 0, constant.

Canonical structure A

- Universe: N.
- $<^{\mathcal{A}}$ is the usual order on \mathbb{N} .
- $0^{A} = 0$.
- $f^{\mathcal{A}}$ is the successor function, i.e., $f^{\mathcal{A}}(i) = i + 1$.
- $R^{\mathcal{A}}(s, pc, m_1, \dots, m_n) = 1$ if (pc, m_1, \dots, m_n) is the configuration of P after s steps (for the initialization β).

The auxiliary formula $\psi_{P\beta}$

$$\psi_{P\beta} = \psi_0 \wedge R(\mathbf{0}, \beta) \wedge \psi_1 \wedge \dots \wedge \psi_{k-1}$$

Meaning of $R(\mathbf{0}, \beta)$ in the structure \mathcal{A} : P is initialized with β

In the structure A the formula ψ_i describes the effect of the i-th instruction of P. For instance:

• If $i: x_j := x_j + 1$ then

$$\psi_{i} = \forall x \forall y_{1} \dots \forall y_{n} ($$

$$R(x, f^{i}(\mathbf{0}), y_{1}, \dots y_{n}) \rightarrow$$

$$R(f(x), f^{(i+1)}(\mathbf{0}), y_{1}, \dots y_{j-1}, f(y_{j}), y_{j+1}, \dots, y_{n})$$

$$)$$

• If i: if $x_j = 0$ then goto ℓ then

 ψ_0 guarantees that in every model the symbol < is interpreted as a total order, that $\mathbf{0}$ is its smallest element, that x < f(x) holds, and that f(x) is the <-successor of x:

$$\psi_0 = \forall x \forall y ((x < y) \to \neg (y < x)) \land \\ \forall x \forall y \forall z ((x < y \land y < z) \to x < z) \land \\ \forall x (\mathbf{0} < x \lor \mathbf{0} = x) \land \\ \forall x (x < f(x)) \land \\ \forall x \forall z (x < z \to (f(x) < z \lor f(x) = z)$$

The formula $\phi_{P\beta}$

We set

$$\phi_{P\beta} = \psi_{P\beta} \longrightarrow \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n)$$

Theorem: $\phi_{P\beta}$ is valid iff program P with initialization β halts.

Proof: (\Rightarrow): If $\phi_{P\beta}$ is valid, then in particular the canonical structure \mathcal{A} is a model of $\phi_{P\beta}$. Since $\mathcal{A} \models \psi_{P\beta}$ clearly holds, we get $\mathcal{A} \models \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n)$. So P initialized with β halts.

(\Leftarrow): (Sketch.) If $\phi_{P\beta}$ is not valid, then there is a structure $\mathcal{B}=(U_{\mathcal{B}},I_{\mathcal{B}})$ such that

$$\mathcal{B} \models \psi_{P\beta}$$
 and $\mathcal{B} \not\models \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n)$.

For every $i \geq 0$ let d_i be the element of $U_{\mathcal{B}}$ such that $(f^i(\mathbf{0}))^{\mathcal{B}} = d_i$. Since $\mathcal{B} \models \psi_{P\beta}$ we have $\mathcal{B} \models \psi_0$, and so for $D = \{d_i \mid i \geq 0\}$ we have (why?):

$$<^{\mathcal{B}} \cap (D \times D) = \{(d_i, d_j) \mid i, j \in \mathbb{N}, i < j\}$$

Let $(pc^{(i)}, m_1^{(i)}, \dots, m_n^{(i)})$ be the configuration of P after i steps (with initialization β). Since $\mathcal{B} \models \psi_{P\beta}$ for every $i \geq 0$ we have $(d_i, d_{pc^{(i)}}, d_{m_1^{(i)}}, \dots, d_{m_n^{(i)}}) \in R^{\mathcal{B}}$. Since

 $\mathcal{B} \not\models \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n), \ P \ does \ not \ terminate$ when initialized with β .

An alternative proof

The tiling problem:

Given: finite set of square tiles S, a horizontal relation $H \subseteq S \times S$ and a vertical relation $V \subseteq S \times S$.

Question: Can the plane $(\mathbb{N} \times \mathbb{N})$ be tiled with the given tiles in such a way, that neighboring tiles satisfy the horizontal or vertical relation? More precisely, does there exist a mapping $\chi: \mathbb{N} \times \mathbb{N} \to S$ such that for all $m, n \in \mathbb{N}$ we have

- if $\chi(m,n)=s$ and $\chi(m+1,n)=s'$, then $(s,s')\in H$ and
- if $\chi(m,n)=s$ and $\chi(m,n+1)=s'$, then $(s,s')\in V$?

Theorem (without proof): The tiling problem is undecidable.

The reduction

We define for each set S of tiles a formula $\phi_{S,H,V}$ that is satisfiable iff the plane can be tiled with S. Why does this prove the undecidability of the validity problem then?

Symbols: predicate symbol P_s of arity 2 for each tile $s \in S$, function symbol f of arity 1.

Canonical structure A_{χ} for each coloring χ :

- Universe: N.
- $f^{\mathcal{A}}$ is the successor function, i.e., $f^{\mathcal{A}}(n) = n + 1$.
- $(m,n) \in P_s$ if and only if $\chi(m,n) = s$.

The formula $\phi_{S,H,V}$

We take $\phi_{S,H,V} = \forall x \forall y \ (F_1 \land F_2)$ where

$$F_{1} = \bigwedge_{s \neq s'} \neg (P_{s}(x, y) \land P_{s'}(x, y))$$

$$F_{2} = \bigvee_{(s,s') \in H} (P_{s}(x, y) \land P_{s'}(f(x), y)) \land \bigvee_{(s,s') \in V} (P_{s}(x, y) \land P_{s'}(x, f(y)))$$

Consequences

Corollary: The satisfiability problem is undecidable for closed formulas of the form $F = \forall x \forall y \ F^*$.

Corollary: The satisfiability problem is undecidable for closed formulas of the form $F = \forall x \exists z \forall y \ F^*$, where F^* contains no function symbols.

Prefix classes

We consider formulas in prenex form without function symbols.

Undecidable classes:

- ∀*∃* (Skolem, 1920)
- ∀∀∀∃ (Suranyi, 1959)
- ∀∃∀ (Kahr, Moore, Wang, 1962)

Decidable classes:

- ∃*∀* (Bernays, Schönfinkel, 1928)
- $\exists^* \forall \exists^*$ (Ackerman, 1928)
- $\exists^* \forall^2 \exists^*$ (Gödel 1932, Kalmar 1933, Schütte 1934)