Undecidability of the validity problem

We prove the undecidability of the validity problem for formulas of
predicate logic with equality.

Recall: there is an algorithm that given a formula of predicate logic

with equality returns a sat-equivalent formula of predicate logic
(without equality).

It follows the validity problem for formulas of predicate logic without
equality is also undecidable.



Goto-programs

The proof is by reduction from the halting problem for
goto-programs.

Prog == [(: Assign (assignment)
¢ : goto (' (unconditional jump)
¢ :if x; = 0 then goto ¢ (conditional jump)
¢ - halt (termination)
Prog ; Prog (concatenation)
Assign = x;:=0 | z;:=uz,

CEii:Ij—Fl ‘ xi::xj—l
¢ = 112]3]...



Example

if z1 = 0 then goto 4;
r1 = x1 — 1;

goto 1;

halt



Claim: goto-programs can simulate any program.

By the claim: a problem is decidable if it is solved by some
goto-program.

We prove the following two theorems:

Theorem: The halting problem for goto-programs is undecidable:
There is no (goto-)program that takes as input a goto-program P
and a valuation [ of the variables of P and decides whether P
initialized with § terminates.

Theorem: If the validity problem for predicate logic is decidable, then
the halting problem for goto-programs is decidable.



Coding

Fact: Programs and valuations can be encoded as integers.

Notations:
e P(ay,...,a;) denotes the Program P initialized with
(&1,...,@@,0,...,0).
|.e., variables x4, ..., x; are initialized with a4, ..., a; and
variables z;.1,...,x, with 0.

e II, denotes the program with code number n
(if the program exists).



Computable encodings

Fact: There exist computable encodings, i.e., encodings for which the
following programs exist:

e Encoder.
Input: a program P.
Output: the code of P, i.e., the number n such that P = II,.

e Decoder.
Input: a number n.
Output: the program II,, if n encodes a program, otherwise ‘Not

a program'.



Assumption: There is a program 1" such that for every pair n,m € N
the initialized program T'(n,m) halts and reports

Not a program if n is not the code of a program
Yes if n is the code of a program and

I1,,(m) halts
No if n is the code of a program and

I1,,(m) does not halt

We show that this assumption leads to a contradiction.



The contradiction

Fact: The asumption implies the existence of a program 71" such that
for every n € N the initialized program T"(n)

halts if n is the code of a program and
I1,,(n) does not halt

does not halt if n is not the code of a program or
I1,,(n) halts



Let k£ be the code of T”, i.e., II, = T". Either the initialized program
T'(k) halts, or it does not halt. But:

T'(k) halts
=k is the code of a program and

I1,(k) does not halt (Def. of T")
= T'(k) does not halt (I, =1T")

T'(k) does not halt
= IIx(k) halts (Def. von T", k is code)
= T'(k) halts (I, =T")

So the assumption is false.



Undecidability of the validity problem

We assign to every program P and valuation 8 a formula ¢pg of
predicate logic with equality such that

¢pg Is valid
if and only if

P with initialization 5 halts

There is a program that on input P, 5 outputs ¢pg.

So no program can solve the validity problem.
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Notations and definitions

Let k denote the number of instructions of P.
(The last instruction is always halt.)

Let n denote the number of variables of P.
(l.e., the variables of P are x,...,x,.)

A configuration of P is a tuple (pc,m4,...,m,) € N*1,
pc is the current value of the program counter and mg,...m,, the
current valuation of the variables.

Convention: the successor of a configuration ({5, mq,...,m,) is
again ({i,mq,...,my).
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Symbols of the formula ¢p;

R, predicate symbol of arity (n + 2).
<, predicate symbol of arity 2.
f, function symbol of arity 1.

0, constant.
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Canonical structure A

Universe: N.

<4 is the usual order on N.

04 = 0.

A is the successor function, i.e., fA(i) =7+ 1.

RA(s,pc,mq,...,my) = 1if (pc,mq,...,my) is the
configuration of P after s steps (for the initialization j3).
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The auxiliary formula ¢ps

Ypg= Yo AN R(O,8) AN i A .. AN Y

Meaning of R(0, 3) in the structure A: P is initialized with (3

In the structure A the formula v; describes the effect of the ¢-th
instruction of P. For instance:

o If ¢:2;:=2;+1 then
Vi = VaVyr .. Vy, (
R(z, f1(0),y1,...Yyn) —

R(f(x), fD(0), yr, -y, f(¥)), Yjrns - - Un)
)
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o If ¢:if z; =0 then goto ¢ then

v = VaVyp ... Vy, (
R(xafi(())vyla .. yn) —
( ;=0 A R(f(2),f(0),y1,--,Yn)

~(y;=0) A R(f(2), [FD(0),y1,. ..

, Un)
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1y guarantees that in every model the symbol < is interpreted as a
total order, that O is its smallest element, that x < f(z) holds, and
that f(x) is the <-successor of x:

Yo = VaVy((z <y) = —(y<z)) A
VaVyVz((r <y Ay <z)—=x<z) A
Vx(0<xzVO0=2z) A
Ve(rx < f(z)) A
VaVz(x < z = (f(z) < 2V f(z) = 2)
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The formula ¢p;

We set

dps =  Ypg — FrIy ...y, Rz, f50),y1,. .., yn)

Theorem: ¢pg is valid iff program P with initialization S halts.

Proof: (=): If ¢pg is valid, then in particular the canonical structure
A is a model of ¢ppg. Since A |= ¢pg clearly holds, we get

A= 3z3y; ...y, R(x, f5(0),y1,...,y,). So P initialized with 3
halts.
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(«<=): (Sketch.) If ¢ps is not valid, then there is a structure
B = (Ug, Ig) such that

B ‘: ¢Pﬂ and 15 \# Elleyl p Elyn R(xvfk(o)ayla .o 7yn) .

For every i > 0 let d; be the element of Uy such that (f%(0))? = d;.
Since B = v¥pz we have B = 1)y, and so for D = {d; | ¢ > 0} we
have (why?):

<FN(D x D) ={(d;,d;) | i,j € N,i < j}

Let (pc, mgi) - mq(f)) be the configuration of P after i steps (with

)

initialization [3). Since B = v pg for every i > 0 we have
(di, dpc(i), dmgi), Ce dmg)) € RB. Since

B W 323y, ...y, R(x, f5(0),91,...,yn), P does not terminate
when initialized with (.
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An alternative proof

The tiling problem:

Given: finite set of square tiles S, a horizontal relation H C S x S
and a vertical relation V C § x S.

Question: Can the plane (N x N) be tiled with the given tiles in such
a way, that neighboring tiles satisfy the horizontal or vertical relation?
More precisely, does there exist a mapping x : N x N — S such that
for all m,n € N we have

o if Y(m,n)=sand x(m+1,n) =3¢, then (s,s') € H and
e if Y(m,n)=sand x(m,n+1)=2¢, then (s,s") € V7

Theorem (without proof): The tiling problem is undecidable.
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The reduction

We define for each set S of tiles a formula ¢g ;v that is satisfiable iff
the plane can be tiled with S. Why does this prove the undecidability
of the validity problem then?

Symbols: predicate symbol P, of arity 2 for each tile s € S,
function symbol f of arity 1.

Canonical structure A, for each coloring :
e Universe: N.
o f#is the successor function, i.e., fA(n) =n+ 1.

e (m,n) € P, if and only if xy(m,n) = s.
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The formula ¢g 5y

We take ¢g v = VaVy (Fy A Fy) where

F, = /\—|<P3<I,y>/\Ps’(Iay)>
s#s’

F, = \/ (Pz,9) APo(f(2),9) A

(s,s")eH

\/ (Ps(xay) A Ps’(xa f(y>)>

(s,s")eV
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Consequences

Corollary: The satisfiability problem is undecidable for closed formulas
of the form F' = VaVy F™*.

Corollary: The satisfiability problem is undecidable for closed formulas
of the form F' = VxdzVy F™, where F'* contains no function symbols.
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Prefix classes

We consider formulas in prenex form without function symbols.

Undecidable classes:
o V*3* (Skolem, 1920)
e YVVv3 (Suranyi, 1959)
e VIV (Kahr, Moore, Wang, 1962)

Decidable classes:
e J*V* (Bernays, Schonfinkel, 1928)
o J*V3* (Ackerman, 1928)
o I*V?3* (Godel 1932, Kalmar 1933, Schiitte 1934)
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