Theories

A signature is a (finite or infinite) set of predicate and function symbols. We fix a signature S.

A theory is a set of formulas T (over S) closed under consequence, i.e., if $F_1, \ldots, F_n \in T$ and $\{F_1, \ldots, F_n\} \models G$ then $G \in T$.

Fact: Let \mathcal{A} be a structure suitable for S. The set F of formulas such that $\mathcal{A}(F) = 1$ is a theory.

We call them model-based theories.

Fact: Let \mathcal{F} be a set of formulas (a set of axioms). The set F of formulas such that $\mathcal{F} \models F$ is a theory.

We call them axiom-based theories.

Examples

Model-based theories:

Arithmetic: $Th(\mathbb{N}, 0, 1, +, \cdot, <)$ Presburger Arithmetic: $Th(\mathbb{N}, 0, 1, +, <)$ Linear Arithmetic: $Th(\mathbb{Q}, 0, 1, +, c \cdot (c \in \mathbb{Q}), <)$

Axiom-based theories:

- Theory of groups, rings, fields, boolean algebras, ...
- Abstract datatypes: stacks, queues, ...

A set \mathcal{F} of formulas over a signature S is decidable if there is an algorithm that decides for every formula F over S whether $F \in \mathcal{F}$ holds.

A theory T is decidable if it is decidable as a set.

A theory T is axiomatizable if there is a decidable set $\mathcal{F} \subseteq T$ of closed formulas (the axioms) such that every formula of T is a consequence of \mathcal{F} .

Quantifier elimination

A quantifier elimination procedure (QE-procedure) for a model-based theory with structure \mathcal{A} is a computable function that maps each formula of the theory of the form $\exists x \ F$ (where F contains no quantifiers) to a formula G without quantifiers such that:

•
$$\mathcal{A}(\exists x \ F) = \mathcal{A}(G).$$

• Every free variable of G is also a free variable of $\exists x \ F$.

Notation: We abbreviate $\mathcal{A}(F_1) = \mathcal{A}(F_2)$ by $F_1 \equiv_{\mathcal{A}} F_2$.

Theorem: If the set of quantifier-free closed formulas of a theory is decidable and the theory has a quantifier elimination procedure, then the theory is decidable.

Proof:

- Convert the formula into prenex form.
- Eliminate all quantifers inside-out (i.e., starting with the innermost quantifier), where universal quantifiers are transformed into existential ones with the help of the rule ∀x F ≡ ¬∃x ¬F.
- Decide the resulting quantifier-free closed formula.

Linear Arithmetic

Linear Arithmetic: $Th(\mathcal{Q})$, where $\mathcal{Q} = (\mathbb{Q}, 0, 1, +, c \cdot (c \in \mathbb{Q}), <)$ Syntax:

Terms: $t := 0 | 1 | x | t_1 + t_2 | c \cdot t$ Atomic formulas: $A := t_1 < t_2 | t_1 = t_2$ Formulas: $F := A | \neg F | F_1 \lor F_2 | F_1 \land F_2 | \exists x F | \forall x F$

Structure Q:

- Universe: \mathbb{Q} .
- Interpretation of 0, 1, +, < is clear.
- $\mathcal{Q}(c \cdot t) = c \cdot \mathcal{Q}(t).$

Expressiveness

Some assertions that can be formalized in linear arithmetic:

- The system $Ax \leq b$ has no solution.
- Every solution of $A_1x \leq b_1$ is also a solution of $A_2x \leq b_2$.
- For every solution x_1 of $A_1x \le b_1$ there are solutions x_2 and x_3 of $A_2x \le b_2$ and $A_3x \le b_3$ such that $x_1 = x_2 + x_3$.
- The smallest solution of A₁x ≤ b₁ is larger than the largest solution of A₂x ≤ b₂.

Fourier-Motzkin elimination

(slides by Prof. Nipkow.)

We present a QE-procedure for linear arithmetic.

Given: Formula $\exists xF$ where F is quantifier-free. Goal: Quantifier-free formula G such that $G \equiv_{\mathcal{Q}} \exists xF$.

Two phases:

- Phase I: Simplification of the problem through logical manipulations.
- Phase II: QE-procedure for the simplified case.

Phase I

Step 1: Bring negations in and eliminate them using

$$\neg (t_1 = t_2) \equiv_{\mathcal{Q}} (t_2 < t_1) \lor (t_1 < t_2) \neg (t_1 < t_2) \equiv_{\mathcal{Q}} (t_2 < t_1) \lor (t_2 = t_1)$$

Step 2: Convert into DNF and move $\exists x \text{ through } \lor \text{ using}$

$$\exists x(F_1 \lor F_2) \equiv \exists xF_1 \lor \exists xF_2$$

The result is of the form $\bigvee_{i=1}^{n} \exists x \ (\bigwedge_{j=1}^{m_i} F_{ij})$. So w.l.o.g. we restrict our attention to the case

$$F = F_1 \wedge \ldots \wedge F_n$$

Phase I (Con.)

Step 3: Miniscoping: consider only the A_i containing x. The rule $\exists x \ (F_1 \land F_2) \equiv (\exists x \ F_1) \land F_2$ if x does not occur free in F_2 allows us to restrict our attention w.l.o.g. to the case

 $F = F_1 \land \ldots \land F_n$ and x occurs free in every F_i

Phase I (Con.)

Step 4: Isolate x in F_i .

Define *x*-atoms: $A^x := x = t | x < t | t < x$ where *x* does not occur in *t*.

Fact: For every $i \in [1..n]$ there is a x-Atom A_i^x such that $A_i^x \equiv_Q A_i$. (requires linearity!!)

Example:

If
$$A_i = 3 \cdot x + 5 \cdot y < 7 \cdot x + 3 \cdot z$$

then take $A_i^x = \frac{5}{4} \cdot y + \left(-\frac{3}{4}\right) \cdot z < x$

W.I.o.g. we can restrict our attention to the case

$$F = A_1^x \wedge \ldots \wedge A_n^x$$

Phase II

Case 1. There exists $k \in [1..n]$ such that $A_k^x = (x = t_k)$. Then: $\exists x F \equiv_{\mathcal{Q}} F[x/t_k]$. Set $G := F[x/t_k] = A_1^x[x/t_k] \wedge \ldots \wedge A_n^x[x/t_k]$. Case 2. For every $k \in [1..n]$: $A_k^x = (x < t_k)$ or $A_k^x = (t_k < x)$. Classify the A_i^x into lower and upper bounds:

$$F = \bigwedge_{i=1}^{l} L_i \wedge \bigwedge_{j=1}^{u} U_j \quad \text{where } L_i = (l_i < x) \text{ and } U_j = (x < u_j)$$

I.e., l_i is a (lower bound) and u_j an (upper bound) for x.

Phase II (Con.)

Case 2a: l = 0 or u = 0. (Only lower or upper bounds.)

Then: $\exists xF \equiv_{\mathcal{A}} 1.$

Set G := 1

Case 2b: l > 0 and u > 0. (Both lower and upper bounds.)

Then:
$$\exists xF \equiv_{\mathcal{Q}} \bigwedge_{i=1}^{l} \bigwedge_{j=1}^{u} (l_i < u_j).$$

 $(\mathcal{Q}(\exists xF) = 1 \text{ iff all lower bounds are smaller than all upper bounds.}$ Observe: this holds because \mathbb{Q} is a dense order!)

Set $G = \bigwedge_{i=1}^{l} \bigwedge_{j=1}^{u} (l_i < u_j).$

Complexity

Dominated by the case 2b.

If |F| = n then $|G| = O(n^2)$.

The procedure needs $O(n^{2^m})$ for a formula $\exists x_1 \dots \exists x_m F$ of length n. (Assuming F is in DNF.)