Theories

A signature is a (finite or infinite) set of predicate and function symbols. We fix a signature S.

A theory is a set of formulas T (over S) closed under consequence, i.e., if $F_{1}, \ldots, F_{n} \in T$ and $\left\{F_{1}, \ldots, F_{n}\right\} \models G$ then $G \in T$.

Fact: Let \mathcal{A} be a structure suitable for S. The set F of formulas such that $\mathcal{A}(F)=1$ is a theory.
We call them model-based theories.
Fact: Let \mathcal{F} be a set of formulas (a set of axioms). The set F of formulas such that $\mathcal{F} \models F$ is a theory.
We call them axiom-based theories.

Examples

Model-based theories:

$$
\begin{array}{ll}
\text { Arithmetic: } & \operatorname{Th}(\mathbb{N}, 0,1,+, \cdot,<) \\
\text { Presburger Arithmetic: } & \operatorname{Th}(\mathbb{N}, 0,1,+,<) \\
\text { Linear Arithmetic: } & \operatorname{Th}(\mathbb{Q}, 0,1,+, c \cdot(c \in \mathbb{Q}),<)
\end{array}
$$

Axiom-based theories:

- Theory of groups, rings, fields, boolean algebras, ...
- Abstract datatypes: stacks, queues, ...

Decidability and axiomatizability

A set \mathcal{F} of formulas over a signature S is decidable if there is an algorithm that decides for every formula F over S whether $F \in \mathcal{F}$ holds.

A theory T is decidable if it is decidable as a set.
A theory T is axiomatizable if there is a decidable set $\mathcal{F} \subseteq T$ of closed formulas (the axioms) such that every formula of T is a consequence of \mathcal{F}.

Quantifier elimination

A quantifier elimination procedure (QE-procedure) for a model-based theory with structure \mathcal{A} is a computable function that maps each formula of the theory of the form $\exists x F$ (where F contains no quantifiers) to a formula G without quantifiers such that:

- $\mathcal{A}(\exists x \quad F)=\mathcal{A}(G)$.
- Every free variable of G is also a free variable of $\exists x F$.

Notation: We abbreviate $\mathcal{A}\left(F_{1}\right)=\mathcal{A}\left(F_{2}\right)$ by $F_{1} \equiv_{\mathcal{A}} F_{2}$.

Theorem: If the set of quantifier-free closed formulas of a theory is decidable and the theory has a quantifier elimination procedure, then the theory is decidable.

Proof:

- Convert the formula into prenex form.
- Eliminate all quantifers inside-out (i.e., starting with the innermost quantifier), where universal quantifiers are transformed into existential ones with the help of the rule $\forall x F \equiv \neg \exists x \neg F$.
- Decide the resulting quantifier-free closed formula.

Linear Arithmetic

Linear Arithmetic: $\operatorname{Th}(\mathcal{Q})$, where $\mathcal{Q}=(\mathbb{Q}, 0,1,+, c \cdot(c \in \mathbb{Q}),<)$
Syntax:
Terms: $\quad t:=0|1| x\left|t_{1}+t_{2}\right| c \cdot t$
Atomic formulas: $\quad A:=t_{1}<t_{2} \mid t_{1}=t_{2}$
Formulas: $\quad F:=A|\neg F| F_{1} \vee F_{2}\left|F_{1} \wedge F_{2}\right| \exists x F \mid \forall x F$
Structure \mathcal{Q} :

- Universe: \mathbb{Q}.
- Interpretation of $0,1,+,<$ is clear.
- $\mathcal{Q}(c \cdot t)=c \cdot \mathcal{Q}(t)$.

Expressiveness

Some assertions that can be formalized in linear arithmetic:

- The system $A x \leq b$ has no solution.
- Every solution of $A_{1} x \leq b_{1}$ is also a solution of $A_{2} x \leq b_{2}$.
- For every solution x_{1} of $A_{1} x \leq b_{1}$ there are solutions x_{2} and x_{3} of $A_{2} x \leq b_{2}$ and $A_{3} x \leq b_{3}$ such that $x_{1}=x_{2}+x_{3}$.
- The smallest solution of $A_{1} x \leq b_{1}$ is larger than the largest solution of $A_{2} x \leq b_{2}$.

Fourier-Motzkin elimination

(slides by Prof. Nipkow.)
We present a QE-procedure for linear arithmetic.
Given: Formula $\exists x F$ where F is quantifier-free.
Goal: Quantifier-free formula G such that $G \equiv_{\mathcal{Q}} \exists x F$.
Two phases:

- Phase I: Simplification of the problem through logical manipulations.
- Phase II: QE-procedure for the simplified case.

Phase I

Step 1: Bring negations in and eliminate them using

$$
\begin{array}{ll}
\neg\left(t_{1}=t_{2}\right) & \equiv_{\mathcal{Q}} \\
\neg\left(t_{2}<t_{1}\right) \vee\left(t_{1}<t_{2}\right) \\
\left.\neg t_{2}\right) & \equiv_{\mathcal{Q}} \\
\left(t_{2}<t_{1}\right) \vee\left(t_{2}=t_{1}\right)
\end{array}
$$

Step 2: Convert into DNF and move $\exists x$ through \vee using

$$
\exists x\left(F_{1} \vee F_{2}\right) \equiv \exists x F_{1} \vee \exists x F_{2}
$$

The result is of the form $\bigvee_{i=1}^{n} \exists x\left(\bigwedge_{j=1}^{m_{i}} F_{i j}\right)$. So w.l.o.g. we restrict our attention to the case

$$
F=F_{1} \wedge \ldots \wedge F_{n}
$$

Phase I (Con.)

Step 3: Miniscoping: consider only the A_{i} containing x. The rule

$$
\exists x\left(F_{1} \wedge F_{2}\right) \equiv\left(\exists x F_{1}\right) \wedge F_{2} \quad \text { if } x \text { does not occur free in } F_{2}
$$

allows us to restrict our attention w.l.o.g. to the case

$$
F=F_{1} \wedge \ldots \wedge F_{n} \quad \text { and } x \text { occurs free in every } F_{i}
$$

Phase I (Con.)

Step 4: Isolate x in F_{i}.
Define x-atoms: $A^{x}:=x=t|x<t| t<x$ where x does not occur in t.

Fact: For every $i \in[1 . . n]$ there is a x-Atom A_{i}^{x} such that $A_{i}^{x} \equiv_{\mathcal{Q}} A_{i}$. (requires linearity!!)

Example:

$$
\begin{aligned}
& \text { If } A_{i}=3 \cdot x+5 \cdot y<7 \cdot x+3 \cdot z \\
& \text { then take } A_{i}^{x}=\frac{5}{4} \cdot y+\left(-\frac{3}{4}\right) \cdot z<x
\end{aligned}
$$

W.I.o.g. we can restrict our attention to the case

$$
F=A_{1}^{x} \wedge \ldots \wedge A_{n}^{x}
$$

Phase II

Case 1. There exists $k \in[1 . . n]$ such that $A_{k}^{x}=\left(x=t_{k}\right)$.
Then: $\exists x F \equiv_{\mathcal{Q}} F\left[x / t_{k}\right]$.
Set $G:=F\left[x / t_{k}\right]=A_{1}^{x}\left[x / t_{k}\right] \wedge \ldots \wedge A_{n}^{x}\left[x / t_{k}\right]$.
Case 2. For every $k \in[1 . . n]: A_{k}^{x}=\left(x<t_{k}\right)$ or $A_{k}^{x}=\left(t_{k}<x\right)$.
Classify the A_{i}^{x} into lower and upper bounds:

$$
F=\bigwedge_{i=1}^{l} L_{i} \wedge \bigwedge_{j=1}^{u} U_{j} \quad \text { where } L_{i}=\left(l_{i}<x\right) \text { and } U_{j}=\left(x<u_{j}\right)
$$

I.e., l_{i} is a (lower bound) and u_{j} an (upper bound) for x.

Phase II (Con.)

Case 2a: $l=0$ or $u=0$. (Only lower or upper bounds.)
Then: $\exists x F \equiv_{\mathcal{A}} 1$.
Set $G:=1$
Case 2 b : $l>0$ and $u>0$. (Both lower and upper bounds.)
Then: $\exists x F \equiv_{\mathcal{Q}} \bigwedge_{i=1}^{l} \bigwedge_{j=1}^{u}\left(l_{i}<u_{j}\right)$.
$(\mathcal{Q}(\exists x F)=1$ iff all lower bounds are smaller than all upper bounds. Observe: this holds because \mathbb{Q} is a dense order!)
Set $G=\bigwedge_{i=1}^{l} \bigwedge_{j=1}^{u}\left(l_{i}<u_{j}\right)$.

Complexity

Dominated by the case 2 b .
If $|F|=n$ then $|G|=O\left(n^{2}\right)$.
The procedure needs $O\left(n^{2^{m}}\right)$ for a formula $\exists x_{1} \ldots \exists x_{m} F$ of length n. (Assuming F is in DNF.)

