
Theories

A signature is a (finite or infinite) set of predicate and function

symbols. We fix a signature S.

A theory is a set of formulas T (over S) closed under consequence,

i.e., if F1, . . . , Fn ∈ T and {F1, . . . , Fn} |= G then G ∈ T .

Fact: Let A be a structure suitable for S. The set F of formulas such

that A(F ) = 1 is a theory.

We call them model-based theories.

Fact: Let F be a set of formulas (a set of axioms). The set F of

formulas such that F |= F is a theory.

We call them axiom-based theories.
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Examples

Model-based theories:

Arithmetic: Th(N, 0, 1,+, ·, <)

Presburger Arithmetic: Th(N, 0, 1,+, <)

Linear Arithmetic: Th(Q, 0, 1,+, c · (c ∈ Q), <)

Axiom-based theories:

• Theory of groups, rings, fields, boolean algebras, . . .

• Abstract datatypes: stacks, queues, . . .
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Decidability and axiomatizability

A set F of formulas over a signature S is decidable if there is an

algorithm that decides for every formula F over S whether F ∈ F

holds.

A theory T is decidable if it is decidable as a set.

A theory T is axiomatizable if there is a decidable set F ⊆ T of

closed formulas (the axioms) such that every formula of T is a

consequence of F .
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Quantifier elimination

A quantifier elimination procedure (QE-procedure) for a model-based

theory with structure A is a computable function that maps each

formula of the theory of the form ∃x F (where F contains no

quantifiers) to a formula G without quantifiers such that:

• A(∃x F ) = A(G).

• Every free variable of G is also a free variable of ∃x F .

Notation: We abbreviate A(F1) = A(F2) by F1 ≡A F2.
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Theorem: If the set of quantifier-free closed formulas of a theory is

decidable and the theory has a quantifier elimination procedure, then

the theory is decidable.

Proof:

• Convert the formula into prenex form.

• Eliminate all quantifers inside-out (i.e., starting with the

innermost quantifier), where universal quantifiers are

transformed into existential ones with the help of the rule

∀x F ≡ ¬∃x ¬F .

• Decide the resulting quantifier-free closed formula.
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Linear Arithmetic

Linear Arithmetic: Th(Q),where Q = (Q, 0, 1,+, c · (c ∈ Q), <)

Syntax:

Terms: t := 0 | 1 | x | t1 + t2 | c · t

Atomic formulas: A := t1 < t2 | t1 = t2

Formulas: F := A | ¬F | F1 ∨ F2 | F1 ∧ F2 | ∃x F | ∀x F

Structure Q:

• Universe: Q.

• Interpretation of 0, 1, +, < is clear.

• Q(c · t) = c · Q(t).

6



Expressiveness

Some assertions that can be formalized in linear arithmetic:

• The system Ax ≤ b has no solution.

• Every solution of A1x ≤ b1 is also a solution of A2x ≤ b2.

• For every solution x1 of A1x ≤ b1 there are solutions x2 and x3

of A2x ≤ b2 and A3x ≤ b3 such that x1 = x2 + x3.

• The smallest solution of A1x ≤ b1 is larger than the largest

solution of A2x ≤ b2.
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Fourier-Motzkin elimination

(slides by Prof. Nipkow.)

We present a QE-procedure for linear arithmetic.

Given: Formula ∃xF where F is quantifier-free.

Goal: Quantifier-free formula G such that G ≡Q ∃xF .

Two phases:

• Phase I: Simplification of the problem through logical

manipulations.

• Phase II: QE-procedure for the simplified case.
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Phase I

Step 1: Bring negations in and eliminate them using

¬(t1 = t2) ≡Q (t2 < t1) ∨ (t1 < t2)

¬(t1 < t2) ≡Q (t2 < t1) ∨ (t2 = t1)

Step 2: Convert into DNF and move ∃x through ∨ using

∃x(F1 ∨ F2) ≡ ∃xF1 ∨ ∃xF2

The result is of the form
∨n

i=1
∃x (

∧mi

j=1
Fij). So w.l.o.g. we restrict

our attention to the case

F = F1 ∧ . . . ∧ Fn
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Phase I (Con.)

Step 3: Miniscoping: consider only the Ai containing x. The rule

∃x (F1 ∧ F2) ≡ (∃x F1) ∧ F2 if x does not occur free in F2

allows us to restrict our attention w.l.o.g. to the case

F = F1 ∧ . . . ∧ Fn and x occurs free in every Fi
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Phase I (Con.)

Step 4: Isolate x in Fi.

Define x-atoms: Ax := x = t | x < t | t < x where x does not

occur in t.

Fact: For every i ∈ [1..n] there is a x-Atom Ax
i such that Ax

i ≡Q Ai.

(requires linearity!!)

Example:

If Ai = 3 · x+ 5 · y < 7 · x+ 3 · z

then take Ax
i = 5

4
· y +

(

−3

4

)

· z < x

W.l.o.g. we can restrict our attention to the case

F = Ax
1
∧ . . . ∧ Ax

n
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Phase II

Case 1. There exists k ∈ [1..n] such that Ax
k = (x = tk).

Then: ∃xF ≡Q F [x/tk].

Set G := F [x/tk] = Ax
1
[x/tk] ∧ . . . ∧ Ax

n[x/tk].

Case 2. For every k ∈ [1..n]: Ax
k = (x < tk) or A

x
k = (tk < x).

Classify the Ax
i into lower and upper bounds:

F =
l
∧

i=1

Li ∧
u
∧

j=1

Uj where Li = (li < x) and Uj = (x < uj)

I.e., li is a (lower bound) and uj an (upper bound) for x.
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Phase II (Con.)

Case 2a: l = 0 or u = 0. (Only lower or upper bounds.)

Then: ∃xF ≡A 1.

Set G := 1

Case 2b: l > 0 and u > 0. (Both lower and upper bounds.)

Then: ∃xF ≡Q

∧l

i=1

∧u

j=1
(li < uj).

(Q(∃xF ) = 1 iff all lower bounds are smaller than all upper bounds.

Observe: this holds because Q is a dense order!)

Set G =
∧l

i=1

∧u

j=1
(li < uj).
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Complexity

Dominated by the case 2b.

If |F | = n then |G| = O(n2).

The procedure needs O(n2
m

) for a formula ∃x1 . . .∃xm F of length n.

(Assuming F is in DNF.)
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