Resolution for predicate logic

Gilmore's algorithm is correct, but useless in practice.
We upgrade resolution to make it work for predicate logic.

Recall: resolution in propositional logic

Resolution step:

Mini-example:

A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:
Let F be a closed formula in Skolem form and let $\left\{F_{1}, F_{2}, F_{3}, \ldots,\right\}$
be an enumeration of $E(F)$.
$n:=0$;
repeat $n:=n+1$;
until ($F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$) is unsatisfiable;
(this can be checked with any calculus for propositional logic)
report "unsatisfiable" and halt
"Any calculus" \leadsto use resolution for the unsatisfiability test

Recall: Definition of Res

Definition: Let F be a set of clauses. The set of clauses $\operatorname{Res}(F)$ is defined by

$$
\operatorname{Res}(F)=F \cup\{R \mid R \text { is a resolvent of two clauses } F\} .
$$

We set:

$$
\begin{aligned}
\operatorname{Res}^{0}(F) & =F \\
\operatorname{Res}^{n+1}(F) & =\operatorname{Res}\left(\operatorname{Res}^{n}(F)\right) \quad \text { for } n \geq 0
\end{aligned}
$$

and define

$$
\operatorname{Res}^{*}(F)=\bigcup_{n \geq 0} \operatorname{Res}^{n}(F)
$$

Ground clauses

A ground term is a term without occurrences of variables.
A ground formula is a formula in which only ground terms occur.
A predicate clause is a disjunction of atomic formulas.
A ground clause is a disjunction of ground atomic formulas.
A ground instance of a predicate clause K is the result of substituting ground terms for the variables of K.

Clause Herbrand expansion

Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} F^{*}$ be a closed formula in Skolem form with matrix F^{*} in clause form, and let C_{1}, \ldots, C_{m} be the set of predicate clauses of F^{*}.
The clause Herbrand expansion of F is the set of ground clauses

$$
C E(F)=\bigcup_{i=1}^{m}\left\{C_{i}\left[y_{1} / t_{1}\right]\left[y_{2} / t_{2}\right] \ldots\left[y_{n} / t_{n}\right] \mid t_{1}, t_{2}, \ldots, t_{n} \in D(F)\right\}
$$

Lemma: $C E(F)$ is unsatisfiable iff $E(F)$ is unsatisfiable.
Proof: Follows immediately from the definition of satisfiability for sets of formulas.

Ground resolution algorithm

Let $C_{1}, C_{2}, C_{3}, \ldots$ be an enumeration of $C E(F)$.

$$
\begin{aligned}
& n:=0 ; \\
& S:=\emptyset ; \\
& \text { repeat } \\
& \qquad n:=n+1 ; \\
& \quad S:=S \cup\left\{C_{n}\right\} ; \\
& \quad S:=\operatorname{Res}^{*}(S) \\
& \text { until } \square \in S \\
& \text { report "unsatisfiable" and halt }
\end{aligned}
$$

Ground resolution theorem

Ground Resolution Theorem: A formula $F=\forall y_{1} \ldots \forall y_{n} F^{*}$ with matrix F^{*} in clause form is unsatisfiable iff there is a set of ground clauses C_{1}, \ldots, C_{m} such that:

- C_{m} is the empty clause, and
- for every $i=1, \ldots, m$
- either C_{i} is a ground instance of a clause $K \in F^{*}$, i.e., $C_{i}=K\left[y_{1} / t_{1}\right] \ldots\left[y_{n} / t_{n}\right]$ where $t_{j} \in D(F)$,
- or C_{i} is a resolvent of two clauses C_{a}, C_{b} with $a<i$ and $b<i$

Proof sketch: If F is unsatisfiable, then C_{1}, \ldots, C_{m} can be easily extracted from S by leaving clauses out.

Substitutions

A substitution sub is a (partial) mapping of variables to terms. An atomic substitution is a substitution which maps one single variable to a term.

Fsub denotes the result of applying the substitution $s u b$ to the formula F.
t sub denotes the result of applying the substitution sub to the term t

Substitutions

The concatenation $s u b_{1} s u b_{2}$ of two substitutions $s u b_{1}$ and $s u b_{2}$ is the substitution that maps every variable x to $\operatorname{sub}_{2}\left(s u b_{1}(x)\right)$.
(First apply $s u b_{1}$ and then $s u b_{2}$.)

Substitutions

Two substitutions $s u b_{1}, s u b_{2}$ are equivalent if $t s u b_{1}=t s u b_{2}$ for every term t.

Every substitution is equivalent to a concatenation of atomic substitutions. For instance, the substitution

$$
x \mapsto f(h(w)) \quad y \mapsto g(a, h(w)) \quad z \mapsto h(w)
$$

is equal to the concatenation

$$
[x / f(z)][y / g(a, z)][z / h(w)] .
$$

Swapping Lemma for substitutions

Lemma: If $x \notin \operatorname{dom}(s u b)$ and x appears in none of the terms y sub with $y \in \operatorname{dom}(s u b)$, then

$$
[x / t] s u b=s u b[x / t s u b]
$$

Examples:

- $[x / f(y)] \underbrace{[y / g(z)]}_{\text {sub }}=[y / g(z)][x / f(g(z))]$
- but $[x / f(y)] \underbrace{[x / g(z)]}_{\text {sub }} \neq[x / g(z)][x / f(y)]$
- and $[x / z] \underbrace{[y / x]}_{\text {sub }} \neq[y / x][x / z]$

Unifier and most general unifier

Let $\mathbf{L}=\left\{L_{1}, \ldots, L_{k}\right\}$ be a set of literals of predicate clauses (terms). A substitution sub is a unifier of \mathbf{L} if

$$
L_{1} s u b=L_{2} s u b=\ldots=L_{k} s u b
$$

i.e., if $|\mathbf{L} s u b|=1$, where $\mathbf{L} s u b=\left\{L_{1} s u b, \ldots, L_{k} s u b\right\}$.

A unifier sub of \mathbf{L} is a most general unifier of \mathbf{L} if for every unifier $s u b^{\prime}$ of \mathbf{L} there is a substitution s such that $s u b^{\prime}=s u b s$.

Exercise

Unifiable?		Yes	No
$P(f(x))$	$P(g(y))$		
$P(x)$	$P(f(y))$		
$P(x, f(y))$	$P(f(u), z)$		
$P(x, f(y))$	$P(f(u), f(z))$		
$P(x, f(x))$	$P(f(y), y)$		
$P\left(x, g(x), g^{2}(x)\right)$	$P(f(z), w, g(w))$		
$P(x, f(y))$	$P(g(y), f(a))$	$P(g(a), z)$	

Unification algorithm

Input: a set $\mathbf{L} \neq \emptyset$ of literals
sub $:=[] \quad$ (the empty substitution)
while $|\mathbf{L} s u b|>1$ do
Find the first position at which two literals $L_{1}, L_{2} \in \mathbf{L} s u b$ differ
if none of the two characters at that position is a variable then then report "non-unifiable" and halt
else let x be the variable and t the term starting at that position
(possibly another variable)
if x occurs in t
then report "non-unifiable" and halt
else $s u b:=\operatorname{sub}[x / t]$
report "unifiable" and return $s u b$

Correctness of the unification algorithm

Lemma: The unification algorithm terminates.
Proof: Every execution of the while-loop (but the last) substitutes a variable x by a term t not containing x, and so the number of variables occurring in \mathbf{L} sub decreases by one.

Lemma: If \mathbf{L} is non-unifiable then the algorithm reports "non-unifiable".
Proof: If \mathbf{L} is non-unifiable then the algorithm can never exit the loop.
Lemma: If \mathbf{L} is unifiable then the algorithm reports "unifiable" and returns the most general unifier of \mathbf{L} (and so in particular every unifiable set \mathbf{L} has a most general unifier).

Resolution for predicate logic

A clause R is a resolvent of two predicate clauses C_{1}, C_{2} if the following holds:

- There are renamings of variables s_{1}, s_{2} (particular cases of substitutions) such that no variable occurs in both $C_{1} s_{1}$ and $C_{2} s_{2}$.
- There are literals L_{1}, \ldots, L_{m} (with $m \geq 1$) in $C_{1} s_{1}$ and literals $L_{1}^{\prime}, \ldots, L_{n}^{\prime}$ (with $n \geq 1$) in $C_{2} s_{2}$ such that the set

$$
\mathbf{L}=\left\{\overline{L_{1}}, \ldots, \overline{L_{m}}, L_{1}^{\prime}, \ldots, L_{n}^{\prime}\right\}
$$

is unifiable. Let sub be a most general unifier of \mathbf{L}.

- $R=\left(\left(C_{1} s_{1}-\left\{L_{1}, \ldots, L_{m}\right\}\right) \cup\left(C_{2} s_{2}-\left\{L_{1}^{\prime}, \ldots, L_{n}^{\prime}\right\}\right)\right)$ sub.

Correctness and completeness

Questions:

- If using predicate resolution \square can be derived from F then F is unsatisfiable (correctness)
- If F is unsatisfiable then predicate resolution can derive the empty clause \square from F (completeness)

Exercise

Do the following pairs of predicate clauses have a resolvent? How many resolvents are there?

C_{1}	C_{2}	Resolvents
$\{P(x), Q(x, y)\}$	$\{\neg P(f(x))\}$	
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

Lifting-Lemma

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.

Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

—: Resolution
\rightarrow : Substitution

Lifting-Lemma: example

Universal closure

The universal closure of a formula H with free variables x_{1}, \ldots, x_{n} is the formula

$$
\forall H=\forall x_{1} \forall x_{2} \ldots \forall x_{n} H
$$

Let F be a closed formula in Skolem form with matrix F^{*}. Then

$$
F \equiv \forall F^{*} \equiv \bigwedge_{K \in F^{*}} \forall K
$$

Example:

$$
\begin{aligned}
F^{*} & =P(x, y) \wedge \neg Q(y, x) \\
F & \equiv \forall x \forall y(P(x, y) \wedge \neg Q(y, x)) \equiv \forall x \forall y P(x, y) \wedge \forall x \forall y(\neg Q(y, x))
\end{aligned}
$$

Predicate Resolution Theorem

Resolution Theorem of Predicate Logic:
Let F be a closed formula in Skolem form with matrix F^{*} in predicate clause form. F is unsatisfiable iff $\square \in \operatorname{Res}^{*}\left(F^{*}\right)$.

Exercise

Is the set of clauses

$$
\begin{aligned}
& \{\{P(f(x))\},\{\neg P(f(x)), Q(f(x), x)\},\{\neg Q(f(a), f(f(a)))\}, \\
& \quad\{\neg P(x), Q(x, f(x))\}\}
\end{aligned}
$$

unsatisfiable?

Demo

We consider the following set of predicate clauses (Schöning):

$$
\begin{aligned}
F= & \{\{\neg P(x), Q(x), R(x, f(x))\},\{\neg P(x), Q(x), S(f(x))\},\{T(a)\}, \\
& \{P(a)\},\{\neg R(a, x), T(x)\},\{\neg T(x), \neg Q(x)\},\{\neg T(x), \neg S(x)\}\}
\end{aligned}
$$

and prove it is unsatisfiable with otter.

Refinements of resolution

Problems of predicate resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!

