Resolution for predicate logic

Gilmore's algorithm is correct, but useless in practice.

We upgrade resolution to make it work for predicate logic.

Recall: resolution in propositional logic

Resolution step:

Mini-example:

A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form and let $\{F_1, F_2, F_3, \ldots, \}$ be an enumeration of E(F).

n := 0;repeat n := n + 1;until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable; (this can be checked with any calculus for propositional logic) report "unsatisfiable" and halt

"Any calculus" \rightsquigarrow use resolution for the unsatisfiability test

Recall: Definition of *Res*

Definition: Let F be a set of clauses. The set of clauses Res(F) is defined by

 $Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses } F\}.$

We set:

$$Res^{0}(F) = F$$

 $Res^{n+1}(F) = Res(Res^{n}(F))$ for $n \ge 0$

and define

$$Res^*(F) = \bigcup_{n \ge 0} Res^n(F).$$

4

Ground clauses

- A ground term is a term without occurrences of variables.
- A ground formula is a formula in which only ground terms occur.
- A predicate clause is a disjunction of atomic formulas.
- A ground clause is a disjunction of ground atomic formulas.
- A ground instance of a predicate clause K is the result of substituting ground terms for the variables of K.

Clause Herbrand expansion

Let $F = \forall y_1 \forall y_2 \dots \forall y_n F^*$ be a closed formula in Skolem form with matrix F^* in clause form, and let C_1, \dots, C_m be the set of predicate clauses of F^* .

The clause Herbrand expansion of F is the set of ground clauses

$$CE(F) = \bigcup_{i=1}^{m} \{ C_i[y_1/t_1][y_2/t_2] \dots [y_n/t_n] \mid t_1, t_2, \dots, t_n \in D(F) \}$$

Lemma: CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Proof: Follows immediately from the definition of satisfiability for sets of formulas.

Ground resolution algorithm

Let C_1, C_2, C_3, \ldots be an enumeration of CE(F).

n := 0; $S := \emptyset;$ repeat n := n + 1; $S := S \cup \{C_n\};$ $S := Res^*(S)$ until $\Box \in S$ report "unsatisfiable" and half

report "unsatisfiable" and halt

Ground Resolution Theorem: A formula $F = \forall y_1 \dots \forall y_n F^*$ with matrix F^* in clause form is unsatisfiable iff there is a set of ground clauses C_1, \dots, C_m such that:

- C_m is the empty clause, and
- for every $i = 1, \ldots, m$
 - either C_i is a ground instance of a clause $K \in F^*$, i.e., $C_i = K[y_1/t_1] \dots [y_n/t_n]$ where $t_j \in D(F)$,
 - or C_i is a resolvent of two clauses C_a, C_b with a < i and b < i

Proof sketch: If F is unsatisfiable, then C_1, \ldots, C_m can be easily extracted from S by leaving clauses out.

Substitutions

A substitution *sub* is a (partial) mapping of variables to terms. An atomic substitution is a substitution which maps one single variable to a term.

Fsub denotes the result of applying the substitution sub to the formula F.

 $t \ sub$ denotes the result of applying the substitution sub to the term t

Substitutions

The concatenation sub_1sub_2 of two substitutions sub_1 and sub_2 is the substitution that maps every variable x to $sub_2(sub_1(x))$. (First apply sub_1 and then sub_2 .)

Substitutions

Two substitutions sub_1 , sub_2 are equivalent if $t sub_1 = t sub_2$ for every term t.

Every substitution is equivalent to a concatenation of atomic substitutions. For instance, the substitution

$$x\mapsto f(h(w)) \quad y\mapsto g(a,h(w)) \quad z\mapsto h(w)$$

is equal to the concatenation

[x/f(z)] [y/g(a,z)] [z/h(w)].

Swapping Lemma for substitutions

Lemma: If $x \notin dom(sub)$ and x appears in none of the terms ysub with $y \in dom(sub)$, then

[x/t]sub = sub[x/tsub].

Examples:

Let $\mathbf{L} = \{L_1, \ldots, L_k\}$ be a set of literals of predicate clauses (terms). A substitution *sub* is a unifier of \mathbf{L} if

$$L_1 sub = L_2 sub = \ldots = L_k sub$$

i.e., if
$$|\mathbf{L}sub| = 1$$
, where $\mathbf{L}sub = \{L_1sub, \ldots, L_ksub\}$.

A unifier sub of L is a most general unifier of L if for every unifier sub' of L there is a substitution s such that sub' = sub s.

Exercise

Unifiable?			Yes	No
	P(f(x))	P(g(y))		
	P(x)	P(f(y))		
	P(x, f(y))	P(f(u), z)		
	P(x, f(y))	P(f(u), f(z))		
	P(x, f(x))	P(f(y),y)		
	$P(x,g(x),g^2(x))$	P(f(z), w, g(w))		
P(x, f(y))	P(g(y), f(a))	P(g(a), z)		

Unification algorithm

```
Input: a set \mathbf{L} \neq \emptyset of literals
```

```
sub := [] (the empty substitution)
```

```
while |\mathbf{L}sub| > 1 do
```

```
Find the first position at which two literals L_1, L_2 \in \mathbf{Lsub} differ

if none of the two characters at that position is a variable then

then report "non-unifiable" and halt

else let x be the variable and t the term starting at that position

(possibly another variable)

if x occurs in t

then report "non-unifiable" and halt

else sub := sub [x/t]

report "unifiable" and return sub
```

Correctness of the unification algorithm

Lemma: The unification algorithm terminates.

Proof: Every execution of the while-loop (but the last) substitutes a variable x by a term t not containing x, and so the number of variables occurring in Lsub decreases by one.

Lemma: If \mathbf{L} is non-unifiable then the algorithm reports "non-unifiable".

Proof: If L is non-unifiable then the algorithm can never exit the loop.

Lemma: If \mathbf{L} is unifiable then the algorithm reports "unifiable" and returns the most general unifier of \mathbf{L} (and so in particular every unifiable set \mathbf{L} has a most general unifier).

Resolution for predicate logic

A clause R is a resolvent of two predicate clauses C_1, C_2 if the following holds:

- There are renamings of variables s₁, s₂ (particular cases of substitutions) such that no variable occurs in both C₁ s₁ and C₂ s₂.
- There are literals L_1, \ldots, L_m (with $m \ge 1$) in $C_1 s_1$ and literals L'_1, \ldots, L'_n (with $n \ge 1$) in $C_2 s_2$ such that the set

$$\mathbf{L} = \{\overline{L_1}, \dots, \overline{L_m}, L'_1, \dots, L'_n\}$$

is unifiable. Let sub be a most general unifier of L.

• $R = ((C_1 s_1 - \{L_1, \dots, L_m\}) \cup (C_2 s_2 - \{L'_1, \dots, L'_n\}))sub.$

Questions:

- If using predicate resolution □ can be derived from *F* then *F* is unsatisfiable (correctness)
- If *F* is unsatisfiable then predicate resolution can derive the empty clause □ from *F* (completeness)

Exercise

Do the following pairs of predicate clauses have a resolvent? How many resolvents are there?

C_1	C_2	Resolvents
$\{P(x), Q(x, y)\}$	$\{\neg P(f(x))\}$	
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

Lifting-Lemma

Let C_1, C_2 be predicate clauses and let C'_1, C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1, C_2 such that R' is a ground instance of R.

—: Resolution \rightarrow : Substitution

Lifting-Lemma: example

Universal closure

The universal closure of a formula H with free variables x_1, \ldots, x_n is the formula

$$\forall H = \forall x_1 \forall x_2 \dots \forall x_n H$$

Let F be a closed formula in Skolem form with matrix F^* . Then

$$F \equiv \forall F^* \equiv \bigwedge_{K \in F^*} \forall K$$

Example:

 $F^* = P(x, y) \land \neg Q(y, x)$ $F \equiv \forall x \forall y (P(x, y) \land \neg Q(y, x)) \equiv \forall x \forall y P(x, y) \land \forall x \forall y (\neg Q(y, x))$

Predicate Resolution Theorem

Resolution Theorem of Predicate Logic:

Let F be a closed formula in Skolem form with matrix F^* in predicate clause form. F is unsatisfiable iff $\Box \in Res^*(F^*)$.

Is the set of clauses

 $\{ \{ P(f(x)) \}, \{ \neg P(f(x)), Q(f(x), x) \}, \{ \neg Q(f(a), f(f(a))) \}, \\ \{ \neg P(x), Q(x, f(x)) \} \}$

unsatisfiable?

Demo

We consider the following set of predicate clauses (Schöning):

$$F = \{\{\neg P(x), Q(x), R(x, f(x))\}, \{\neg P(x), Q(x), S(f(x))\}, \{T(a)\}, \{P(a)\}, \{\neg R(a, x), T(x)\}, \{\neg T(x), \neg Q(x)\}, \{\neg T(x), \neg S(x)\}\}$$

and prove it is unsatisfiable with otter.

Refinements of resolution

Problems of predicate resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!