Resolution

For every formula F :

$$
(F \vee A) \wedge\left(F^{\prime} \vee \neg A\right) \equiv(F \vee A) \wedge\left(F^{\prime} \vee \neg A\right) \wedge\left(F \vee F^{\prime}\right)
$$

Or in clause form

$$
\{\{\boldsymbol{\phi}, A\},\{\boldsymbol{\phi}, \neg A\}\} \equiv\{\{\boldsymbol{\phi}, A\},\{\boldsymbol{\phi}, \neg A\},\{\boldsymbol{\phi}, \boldsymbol{\phi}\}\}
$$

If $F \vee F^{\prime}$ is the "empty disjunction" (= empty clause) then the formula is unsatisfiable.

- Is it always possible to derive the empty clause from any unsatisfiable formula? (completeness)
- Can we represent derivations in more compact form? (without carrying always all clauses around)

Clause representation of CNF formulas

- Clause: set of literals (disjunction).

$$
\{A, B\} \text { stands for } A \vee B
$$

- Formula: set of clauses (conjunction).

$$
\{\{A, B\},\{\neg A, B\}\} \text { stands for }(A \vee B) \wedge(\neg A \vee B)
$$

- Block: set of formulas (disjunction).

$$
\{F, G\} \text { stands for } F \vee G \text {. }
$$

The empty clause stands for false or 0 .
The empty formula stands for true or 1 .
The empty block stands for false.

Advantages of the clause form

We get "for free":

- Commutativity:
$A \vee B \equiv B \vee A$, both represented by $\{A, B\}$
- Associativity:
$(A \vee B) \vee C \equiv A \vee(B \vee C)$, both represented by $\{A, B, C\}$
- Idempotence:
$(A \vee A) \equiv A$, both represented by $\{A\}$

Resolvent (I)

Definition: Let C_{1}, C_{2} and R be clauses. R is a resolvent of C_{1} and C_{2} if there is a literal L such that $L \in C_{1}, \bar{L} \in C_{2}$ and

$$
R=\left(C_{1}-\{L\}\right) \cup\left(C_{2}-\{\bar{L}\}\right)
$$

where \bar{L} is defined by

$$
\bar{L}=\left\{\begin{aligned}
\neg A_{i} & \text { if } L=A_{i} \\
A_{i} & \text { if } L=\neg A_{i}
\end{aligned}\right.
$$

Resolvent (II)

Graphical representation:

If $C_{1}=\{L\}$ and $C_{2}=\{\bar{L}\}$ then the empty clause is a resolvent of C_{1} and C_{2}. We represent it with the special symbol \square.

Recall: $\square \equiv$ false.

Resolution Lemma

Resolution Lemma: Let F be a formula in CNF, represented as a set of clauses, and let R be a resolvent of two clauses C_{1} and C_{2} in F. Then the formulas F and $F \cup\{R\}$ are equivalent.

Proof: Follows immediately from

$$
\underbrace{\left(F_{1} \vee A\right)}_{C_{1}} \wedge \underbrace{\left(F_{2} \vee \neg A\right)}_{C_{2}} \equiv \underbrace{\left(F_{1} \vee A\right)}_{C_{1}} \wedge \underbrace{\left(C_{2} \vee \neg A\right)}_{C_{2}} \wedge \underbrace{\left(F_{1} \vee F_{2}\right)}_{R}
$$

Resolution calculus

A calculus is a set of syntactic transformation rules allowing to decide semantic properties.

- Syntactic rules: resolution, halt when the empty clause is derived.
- Semantic property: unsatisfiabilty.

Example

We wish to prove that
$((A b \vee B b) \wedge(A b \rightarrow B b) \wedge(B b \wedge R o \rightarrow \neg A b) \wedge R o) \rightarrow(\neg A b \wedge B b)$ is valid. This is the case iff
$(A b \vee B b) \wedge(\neg A b \vee B b) \wedge(\neg B b \vee \neg R o \vee \neg A b) \wedge R o \wedge(A b \vee \neg B b)$ is unsatisfiable. (Recall: $F \rightarrow G$ valid iff $F \wedge \neg G$ unsatisfiable.)

Desirable properties of a calculus

- Correctness (or consistency): If the application of the syntactic rules say that the semantic property holds, then this is indeed the case.
If the empty clause can be derived from F then F is unsatisfiable.
- Completeness: If the semantic property holds, then this can be shown with the help of the syntactic rules.
If F is unsatisfiable then the empty clause can be derived from F.

Definition of $\operatorname{Res}(F)$

Definition: Let F be a set of clauses. The formula $\operatorname{Res}(F)$ is defined as follows:

$$
\operatorname{Res}(F)=F \cup\{R \mid R \text { ist a resolvent of two clauses in } F\} .
$$

Furthermore, define

$$
\begin{aligned}
\operatorname{Res}^{0}(F) & =F \\
\operatorname{Res}^{n+1}(F) & =\operatorname{Res}\left(\operatorname{Res}^{n}(F)\right) \quad \text { für } n \geq 0
\end{aligned}
$$

and finally let

$$
\operatorname{Res}^{*}(F)=\bigcup_{n \geq 0} \operatorname{Res}^{n}(F)
$$

Exercise

Assume n atomic formulas occur in F. Then:
A $\left|\operatorname{Res}^{*}(F)\right| \leq 2^{n} \quad$ B $\quad\left|\operatorname{Res}^{*}(F)\right| \leq 4^{n}$
C $\left|\operatorname{Res}^{*}(F)\right|$ can be arbitrarily large

Resolution Theorem

We prove that resolution is correct and complete:
Resolution Theorem (of propositional logic):
A set of clauses F is unsatisfiable iff $\square \in \operatorname{Res}^{*}(F)$.
Correctness: $\square \in \operatorname{Res}^{*}(F) \Rightarrow F$ is unsatisfiable follows immediately from the resolution lemma.

Completeness proof (I)

Completeness: F is unsatisfiable $\Rightarrow \square \in \operatorname{Res}^{*}(F)$ By induction on the number of atomic formulas in F. Here: Induction step with $n+1=4$

$$
F=\left\{\left\{A_{1}\right\},\left\{\neg A_{2}, A_{4}\right\},\left\{\neg A_{1}, A_{2}, A_{4}\right\},\left\{A_{3}, \neg A_{4}\right\},\left\{\neg A_{1}, \neg A_{3}, \neg A_{4}\right\}\right\}
$$

Completeness proof (I)

Completeness: F is unsatisfiable $\Rightarrow \square \in \operatorname{Res}^{*}(F)$ By induction on the number of atomic formulas in F. Here: Induction step with $n+1=4$

$$
\begin{aligned}
& F=\left\{\left\{A_{1}\right\},\left\{\neg A_{2}, \mathbb{X}_{4}\right\},\left\{\neg A_{1}, A_{2}, \mathcal{A}_{4}\right\},\left\{A_{3}, A_{1}\right\},\left\{\neg A_{1}, \rightarrow A_{3}, \neg A_{4}\right\}\right\} \\
& F_{0}=\left\{\left\{A_{1}\right\},\left\{\neg A_{2}\right\},\left\{\neg A_{1}, A_{2}\right\}\right\}
\end{aligned}
$$

Completeness proof (I)

Completeness: F is unsatisfiable $\Rightarrow \square \in \operatorname{Res}^{*}(F)$ By induction on the number of atomic formulas in F. Here: Induction step with $n+1=4$

$$
\begin{aligned}
& \left.\left.F=\left\{\left\{A_{1}\right\}, \neg \neg A_{2}, A_{4}\right\}, \neg A_{1}, A_{2}, A_{4}\right\},\left\{A_{3}, \neg \mathcal{A}_{4}\right\},\left\{\neg A_{1}, \neg A_{3}, \neg \mathcal{A}_{4}\right\}\right\} \\
& F_{0}=\left\{\left\{A_{1}\right\},\left\{\neg A_{2}\right\},\left\{\neg A_{1}, A_{2}\right\}\right\} \\
& F_{1}=\left\{\left\{A_{1}\right\},\left\{A_{3}\right\},\left\{\neg A_{1}, \neg A_{3}\right\}\right\}
\end{aligned}
$$

Completeness proof (II)

Completeness proof (II)

Completeness proof (II)

Definition

A derivation (or proof) of the empty clause from a set F of clauses is a sequence $C_{1}, C_{2}, \ldots, C_{m}$ of clauses such that:
C_{m} is the empty clause and for every $i=1, \ldots, m$ it holds that C_{i} is either a clause in F or a resolvent of two clauses C_{a}, C_{b} with $a, b<i$.
F is unsatisfiable iff a derivation of the empty clause from F exists.

