
Satisfiability/validity of DNF and CNF

Satisfiability of formulas in DNF can be checked in linear time.

A formula in DNF is satisfiable iff at least one of its

conjunctions is satisfiable. A conjunction is satisfiable iff for

every atomic formula A the conjunction does not contain

both A and ¬A as literals.

Satisfiable: (¬B ∧ A ∧B) ∨ (¬A ∧ C)

Unsatisfiable: (A ∧ ¬A ∧ B) ∨ (C ∧ ¬C)

1

Satisfiability/validity of DNF and CNF

Validity of formulas in CNF can be checked in linear time.

A formula in CNF is valid iff all its disjunctions are valid.

A disjunction is valid iff for some atomic formula A the

disjunction contains both A and ¬A as literals.

Valid: (A ∨ ¬A ∨B) ∧ (C ∨ ¬C)

Not valid: (A ∨ ¬A) ∧ (¬A ∨ C)

2

Satisfiability/validity of DNF and CNF

Theorem: Satisfiability of formulas in CNF is NP-complete.

Theorem: Validity of formulas in DNF is coNP-complete.

3

Efficient satisfiability checks

In the following:

• A very efficient satisfiability check for the special class of

Horn formulas.

• Efficient satisfiability checks for arbitrary formulas in CNF:

DPLL, resolution.

4

Horn formulas

A formula F in CNF is a Horn formula if every disjunction in F

contains at most one positive literal.

Notation:

(¬A ∨ ¬B ∨ C) becomes (A ∧B → C)

(¬A ∨ ¬B) becomes (A ∧B → 0)

A becomes (1 → A)

5

Satisfiablity check for Horn formulas

Input: a Horn formula F .

for every atomic formula A occurring in F do

if F has a subformula of the form (1 → A)

then mark every occurrence of A in F

while F has a subformula G of the form

A1 ∧ . . . ∧ Ak → B or A1 ∧ . . . ∧ Ak → 0

and A1, . . . , Ak are already marked

and B is not yet marked

do

if G has the first form then mark every occurrence of B

else return “unsatisfiable” and halt

return “satisfiable” and halt

6

Correctness of the marking algorithm

Theorem. The marking algorithm is correct and halts after at most n

iterations of the while loop, where n is the number of atomic

formulas that occur in F .

Proof: (a) Termination: after at most n iterations all atomic formulas

are marked, and so the while loop condition does not hold.

(b) If the algorithm returns “unsatisfiable” then F is unsatisfiable.

Proof by induction on the number of executuions of the while loop:

if the algorithm marks A, then A(A) = 1 for every assignment A

such that A(F) = 1.

By contradiction, assume A(F) = 1 for some A. Let

(A1 ∧ . . . ∧An → 0) be the subformula causing “unsatisfiable”. Since

A1, . . . Ak are marked, A(A1) = . . . = A(Ak) = 1. Then

A(A1 ∧ . . . ∧ Ak → 0) = 0 and so A(F) = 0, a contradiction. So F

has no satisfying assignments.

7

(c) If the algorithm returns “satisfiable” then F is satisfiable.

We show that the assignment given by

A(Ai) = 1 iff Ai is marked after termination

satisfies F :

• In every (A1 ∧ . . . ∧Ak → B) either B is marked or at least one

Ai is not marked.

• In every (A1 ∧ . . . ∧ Ak → 0) at least one Ai is not marked

(otherwise the algorithm would have terminated with

“unsatisfiable”).

8

Runtime

Let n be the number of atomic formulas in F .

Let m be the length of F .

The for loop can be executed in O(nm) time (at most two scans of

the formula for each variable).

The number of iterations of the while loop is bounded by n, and the

runtime of an iteration is bounded by m.

Overall runtime: O(nm).

In the next slides we sketch a faster O(m) algorithm.

9

An O(m) algorithm

Data structure:

• Array of conjuncts, each conjunct stored as a doubly-linked list.

(e.g., A1 ∧ A2 → B stored as A1 7→ A2 7→ B)

• Array of size n, where the i-th element is a list of pointers to all

occurrences of Ai on left-hand-sides of conjuncts.

• Single-linked list W of length at most n to store the variables

that have been marked but not yet processed.

• Bitvector V of length n to store the variables that have been

marked.

10

An O(m) algorithm

1. W,V = {A | 1 → A is conjunct of F } 1, O(m)

2. while W 6= ∅ n, O(n)

3. pick (and delete) A from W n, O(n)

4. for each conjunct G → H s.t. A occurs in G do

5. delete A from G O(m), O(m)

6. if G is empty then O(m), O(m)

7. if H = B and B /∈ V then add B to W,V O(m), O(m)

8. else /*H = 0*/ return “unsatisfiable” 1, O(1)

9. return “satisfiable” 1, O(1)

For each line we give the number of times it is executed and the total

time required by all executions together.

11

An O(m) algorithm

Correctness argument (informal):

The algorithm mimics the original one. Marking an atomic formula

corresponds to adding it to the worklist.

12

Example: MYCIN

MYCIN: Rule system for treatment of blood infections developed in

the 1970s.

Example:

IF the infection is pimary-bacteremia

AND the site of the culture is one of the

sterile sites

AND the suspected portal of entry is the

gastrointestinal tract

THEN there is suggestive evidence (0.7) that

infection is bacteroid.

13

	Satisfiability/validity of DNF and CNF
	Satisfiability/validity of DNF and CNF
	Satisfiability/validity of DNF and CNF
	Efficient satisfiability checks
	Horn formulas
	Satisfiablity check for Horn formulas
	Correctness of the marking algorithm
	
	Runtime
	An $O(m)$
algorithm
	An $O(m)$
algorithm
	An $O(m)$
algorithm
	Example: MYCIN

