
Hilbert Calculus

Two kinds of calculi:

• Calculi as basis for automatic techniques

Examples: Resolution, DPLL, BDDs

• Calculi formalizing mathematical reasoning

(axiom, hypothesis, lemma . . . , derivation )

Examples: Hilbert Calculus, Natural Deduction
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Resolution Calculus vs. Hilbert Calculus

Resolution calculus Hilbert calculus

Proves unsatisfiability Proves consequence (F1, . . . , Fn |= G)

Formulas in CNF Formulas with ¬ and →

Syntactic derivation Syntactic derivation of F1, . . . , Fn ⊢ G

of the empty clause from F from axioms and hypothesis

Goal: Goal:

automatic proofs model mathematical reasoning

Completeness proof Completeness proof

comparatively simple comparatively involved
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Recall: Consequence

A formula G is a consequence or follows from the formulas

F1, . . . , Fk if every model A of F1, . . . , Fk that is suitable for G is

also a model of G

If G is a consequence of F1, . . . , Fk then we write F1, . . . , Fk |= G.
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Preliminaries

In the following slides, formulas contain only the operators ¬ and →.

Recall: F ∨G ≡ ¬F →G and F ∧G ≡ ¬(F → ¬G).

The calculus defines a syntactic consequence relation ⊢

(notation: F1, . . . , Fn ⊢ G), intended to “mirror” semantic

consequence.

We will have:

F1, . . . , Fn ⊢ G iff F1, . . . , Fn |= G

(syntactic consequence and semantic consequence will coincide).
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Axiom schemes

We take five axiom schemes or axioms, with F,G as place-holders for

formulas:

(1) F → (G → F )

(2) (F → (G → H)) → ((F → G) → (F → H))

(3) (¬F → ¬G) → (G → F )

(4) F → (¬F → G)

(5) (¬F → F ) → F

An instance of an axiom is the result of substituting the place-holders

of the axiom by formulas.

Easy to see: all instances are valid formulas.

Example: Instance of (4) with ¬A → B and ¬C for F and G:

(¬A → B) → (¬(¬A → B) → ¬C)
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Derivations in Hilbert calculus

Let S be a set of formulas - also called hypothesis - and let F be a

formula. We write S ⊢ F and say that F is a syntactic consequence

of S in Hilbert Calculus if one of these conditions holds:

Axiom: F is an instance of an axiom

Hypothesis: F ∈ S

Modus Ponens: S ⊢ G → F and S ⊢ G, i.e. both G → F

and G are syntactic consequences of S.

6



Modus Ponens

Derivation rule of the calculus, allowing to generate new syntactic

consequences from old ones:

S ⊢ G → F

S ⊢ G

S ⊢ F
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Example of derivation

1. ⊢ A → ((B → A) → A) Instance of Axiom (1)

2. ⊢ (A → ((B → A) → A))

→

((A → (B → A)) → (A → A)) Instance of Axiom (2)

3. ⊢ (A → (B → A)) → (A → A) Modus Ponens with 1. & 2.

4. ⊢ A → (B → A) Instance of Axiom (1)

5. ⊢ A → A Modus Ponens with 3. & 4.

Remark: The same derivation works for arbitrary formulas F,G

instead of A,B, and so we can derive ⊢ F → F for any formula F .

We can therefore see a derivation as a way of producing new axioms

(the axiom F → F in this case).
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Correctness and completeness

Correctness: If F is a syntactic consequence from S, then F is a

consequence of S.

Completeness: If F is a consequence of S, then F is a syntactic

consequence from S.

9



Correctness proof of the Hilbert calculus

Correctness Theorem: Let F be an arbitrary formula, and let S be a

set of formulas such that S ⊢ F . Then S |= F .

Proof: Easy induction on the length of the derivation of S ⊢ F .
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Completeness proof: preliminaries

Wie wish to prove: if S |= F , then S ⊢ F . How could this work?

• Induction on the derivation?

❀ there is no derivation!

• Induction on the structure of the formula F?

For the induction basis we would have to prove for an atomic

formula A:

if S |= A then S ⊢ A.

But how do we construct a derivation of S ⊢ A if all we know is

S |= A?
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Completeness - Proof sketch

(1) S |= F iff S ∪ {¬F} is unsatisfiable. (Trivial)
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Completeness - Proof sketch

(1) S |= F iff S ∪ {¬F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F such that

S ⊢ F and S ⊢ ¬F .
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Completeness - Proof sketch

(1) S |= F iff S ∪ {¬F} is unsatisfiable. (Trivial)
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Completeness - Proof sketch

(1) S |= F iff S ∪ {¬F} is unsatisfiable. (Trivial)
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Completeness - Proof sketch

(1) S |= F iff S ∪ {¬F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F such that

S ⊢ F and S ⊢ ¬F .

(3) S ⊢ F iff S ∪ {¬F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume S |= F .

Then S ∪ {¬F} is unsatisfiable by (1).

Then S ∪ {¬F} is inconsistent by (4).

Then S ⊢ F by (3).
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Completeness - Proof sketch

(1) S |= F iff S ∪ {¬F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F such that

S ⊢ F and S ⊢ ¬F .

(3) S ⊢ F iff S ∪ {¬F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume S |= F .

Then S ∪ {¬F} is unsatisfiable by (1).

Then S ∪ {¬F} is inconsistent by (4).

Then S ⊢ F by (3).

We prove (3) and (4).
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(In)consistency

Definition: A set S of formulas is inconsistent if there is a formula F

such that S ⊢ F and S ⊢ ¬F , otherwise it is consistent.

Observe: inconsistency is a purely syntactic notion!!
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Examples of inconsistent sets

• {A,¬A}

• {¬(A → (B → A))}

• {¬B,¬B → B}

• {C,¬(¬C → D)}
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Important tool: the Deduction Theorem

Theorem: S ∪ {F} ⊢ G iff S ⊢ F → G.

Proof: Assume S ⊢ F → G. Then S ∪ {F} ⊢ F → G.

Using S ∪ {F} ⊢ F and Modus Ponens we get S ∪ {F} ⊢ G.

Assume S ∪ {F} ⊢ G. Proof by induction on the derivation (length):

Axiom/Hypothesis: G is instance of an axiom or G ∈ S ∪ {F}.

If F = G use example of derivation to prove S ⊢ F → F .

Otherwise S ⊢ G and by Axiom (1) S ⊢ G → (F → G).

By Modus Ponens we get S ⊢ F → G.

Modus Ponens: Then S ∪ {F} ⊢ G is derived by Modus Ponens

from some S ∪ {F} ⊢ H → G and S ∪ {F} ⊢ H.

By ind. hyp we have S ⊢ F → (H → G) and S ⊢ F → H.

From Axiom (2) we get

S ⊢ (F → (H → G)) → ((F → H) → (F → G)).

Two applications of Modus Ponens yield S ⊢ F → G.
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Consequences of the Deduction Theorem

Lemma I: S ∪ {¬F} ⊢ F iff S ⊢ F

Proof: Assume S ∪ {¬F} ⊢ F holds.

By the Deduction Theorem S ⊢ ¬F → F .

Using Axiom (5) we get S ⊢ (¬F → F ) → F .

By Modus Ponens we get S ⊢ F .

The other direction is trivial.
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Completeness - Proof of (3)

Assertion (3): S ⊢ F iff S ∪ {¬F} is inconsistent.

Proof: Assume S ⊢ F .

Then S ∪ {¬F} ⊢ F .

Since S ∪ {¬F} ⊢ ¬F , the set S ∪ {¬F} is inconsistent.

Assume S ∪ {¬F} is inconsistent.

Then there is a formula G s.t. S ∪ {¬F} ⊢ G and S ∪ {¬F} ⊢ ¬G.

By Axiom (4) we get S ∪ {¬F} ⊢ G → (¬G → F ).

Two applications of Modus Ponens yield S ∪ {¬F} ⊢ F .

Lemma I yields S ⊢ F .
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Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?
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Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment A as follows:

If A ∈ S then set A(A) := 1.

If ¬A ∈ S then set A(A) := 0.

18



Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment A as follows:

If A ∈ S then set A(A) := 1.

If ¬A ∈ S then set A(A) := 0.

Problem: What do we do if neither A ∈ S nor ¬A ∈ S?
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Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is

consistent and for every formula F either F ∈ S or ¬F ∈ S.
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Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is

consistent and for every formula F either F ∈ S or ¬F ∈ S.

We extend S to a maximally consistent set S ⊇ S.
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Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.
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Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

(4.1) Every consistent set can be extended to a maximally consistent

set.
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Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

(4.1) Every consistent set can be extended to a maximally consistent

set.

(4.2) Let S be maximally consistent and let A be the assignment

given by A(A) = 1 if A ∈ S and A(A) = 0 if A /∈ S.

Then A satisfies S.
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Proof of (4.1) - Preliminaries

Lemma II: Let S be a consistent set and let F be an arbitrary

formula. Then: S ∪ {F} or S ∪ {¬F} (or both) are consistent.

Proof: Assume S is consistent but both S ∪ {F} and S ∪ {¬F} are

inconsistent.

Since S ∪ {¬F} is inconsistent we have S ⊢ F by Assertion (3).

Since S ∪ {F} is inconsistent there is a formula G s.t. S ∪ {F} ⊢ G

and S ∪ {F} ⊢ ¬G, and the Deduction Theorem yields S ⊢ F → G

and S ⊢ F → ¬G.

Modus Ponens yields S ⊢ G and S ⊢ ¬G.

This contradicts the assumption that S is consistent.
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Proof of (4.1)

Assertion (4.1): Every consistent set can be extended to a maximally

consistent set.

Proof: Let F0, F1, F2 . . . be an enumeration of all formulas. Let

S0 = S and

Si+1 =

{

Si ∪ {Fi} if Si ∪ {Fi} consistent

Si ∪ {¬Fi} if Si ∪ {¬Fi} consistent

(this is well defined by Lemma II)

By definition, every Si is consistent.

Let S =
⋃

∞

i=1
Si. If S were inconsistent, some finite subset would also

be inconsistent. So S is consistent.

By definition, S is maximally consistent.
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Proof of (4.2) - Preliminaries

Lemma III: Let S be a maximally consistent set:

(1) For every formula F : F ∈ S iff S ⊢ F .

(2) For every formula F : ¬F ∈ S iff F 6∈ S.

(3) For every two formulas F,G: F → G ∈ S iff F 6∈ S or G ∈ S.

Proof: We prove only: if F 6∈ S then F → G ∈ S (others similar).

From ¬F ∈ S we get:

1. S ⊢ ¬F because ¬F ∈ S

2. S ⊢ ¬F → (¬G → ¬F ) Axiom (1)

3. S ⊢ ¬G → ¬F Modus Ponens to 1. & 2.

4. S ⊢ (¬G → ¬F ) → (F → G) Axiom (3)

5. S ⊢ F → G Modus Ponens to 3. & 4.
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Proof of (4.2)

Assertion (4.2): Let S by maximally consistent, and let A be the

assignment given by: A(A) = 1 iff A ∈ S. Then A satisfies S.

Proof: Let F be a formula. We prove: A(F ) = 1 iff F ∈ S.

By induction on the structure of F (and using Lemma III):

Atomic formulas: F = A. Easy.

Negation: F = ¬G. We have: A(F ) = 1 iff A(G) = 0 iff

G 6∈ S iff ¬G ∈ S iff F ∈ S.

Implication: F = F1 → F2. We have: A(F ) = 1 iff

A(F1 → F2) = 1 iff (A(F1) = 0 or A(F2) = 1) iff

(F1 6∈ S or F2 ∈ S) iff F1 → F2 ∈ S iff F ∈ S.

24



A Hilbert Calculus for predicate logic

We extend formulas by allowing universal quantification.

Three new axiom schemes:

(6) (∀x F ) → F [x/t] for every term t.

(7) (∀x (F → G)) → (∀x F → ∀x G).

(8) F → ∀x F if x does not occur free in F .

Theorem: The extension of the Hilbert Calculus is correct and

complete for predicate logic.
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