Hilbert Calculus

Two kinds of calculi:

e Calculi as basis for automatic techniques
Examples: Resolution, DPLL, BDDs

e Calculi formalizing mathematical reasoning
(axiom, hypothesis, lemma ..., derivation )
Examples: Hilbert Calculus, Natural Deduction



Resolution Calculus vs. Hilbert Calculus

Resolution calculus Hilbert calculus
Proves unsatisfiability Proves consequence (F1,..., F, E G)

Formulas in CNF Formulas with — and —
Syntactic derivation Syntactic derivation of F},... . F, F G

of the empty clause from F from axioms and hypothesis
Goal: Goal:

automatic proofs model mathematical reasoning
Completeness proof Completeness proof
comparatively simple comparatively involved




Recall: Consequence

A formula GG is a consequence or follows from the formulas

Fy, ..., Fy if every model A of Fi,..., F}. that is suitable for G is
also a model of GG

If G is a consequence of F7, ..., F} then we write Fy,... . F, = G.



Preliminaries

In the following slides, formulas contain only the operators — and —.
Recal: FVG=-F—Gand FAG=-(F — —G).

The calculus defines a syntactic consequence relation
(notation: F', ..., I, = (&), intended to “mirror” semantic

consequence.

We will have:
Fl,...,Fnl_G Iﬁ: Fl,...,Fn‘:G

(syntactic consequence and semantic consequence will coincide).



Axiom schemes

We take five axiom schemes or axioms, with I, G as place-holders for
formulas:

(1)
2) (F—-(G—H))— ((F—G) = (F— H))
(3) (-F = -G) = (G—F)

(4) F — (-F — G)
(5) (-F —- F) — F

An instance of an axiom is the result of substituting the place-holders
of the axiom by formulas.

Easy to see: all instances are valid formulas.

Example: Instance of (4) with =A — B and —=C for F' and G:
(A — B) = (-(~A — B) = ()



Derivations in Hilbert calculus

Let S be a set of formulas - also called hypothesis - and let F' be a
formula. We write S+ F' and say that F' is a syntactic consequence
of S in Hilbert Calculus if one of these conditions holds:
Axiom:  F'is an instance of an axiom
Hypothesis: F € S
Modus Ponens: SHFG — F and S+H G, i.e. both G — F

and GG are syntactic consequences of S.



Modus Ponens

Derivation rule of the calculus, allowing to generate new syntactic
consequences from old ones:

N W
T|T T
| Q Q@



Example of derivation

. FA—=(B—A)— A) Instance of Axiom ([I))
2. F(A—= ((B—A) — A))
—

(A= (B—A) - (A= A)) Instance of Axiom (2))
F(A—-(B—A) = (A= A) Modus Ponens with 1. & 2.
—FA— (B— A) Instance of Axiom ([I))
FA— A Modus Ponens with 3. & 4.

Remark: The same derivation works for arbitrary formulas F, G
instead of A, B, and so we can derive - F' — F' for any formula F'.

We can therefore see a derivation as a way of producing new axioms
(the axiom F' — F'in this case).



Correctness and completeness

Correctness: If F'is a syntactic consequence from S, then F'is a
consequence of S.

Completeness: If F'is a consequence of S, then F'is a syntactic
consequence from S.



Correctness proof of the Hilbert calculus

Correctness Theorem: Let F' be an arbitrary formula, and let S be a
set of formulas such that S+ F. Then S = F.

Proof: Easy induction on the length of the derivation of S - F..
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Completeness proof: preliminaries

Wie wish to prove: if S |= I, then S F. How could this work?

e Induction on the derivation?
~» there i1s no derivation!

e Induction on the structure of the formula F'?
For the induction basis we would have to prove for an atomic
formula A:

if S = Athen S+ A.

But how do we construct a derivation of S = A if all we know is

S = A?
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Completeness - Proof sketch

(1) S = Fiff SU{—=F} is unsatisfiable. (Trivial)
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Completeness - Proof sketch
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(2) Definition: S is inconsistent if there is a formula F' such that
Sk FandSkE-F.
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Completeness - Proof sketch

(1) S = Fiff SU{—=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
Sk FandSkE-F.

(3) S+ Fiff SU{—=F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume S = F.

Then S U{—F'} is unsatisfiable by (1).
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Completeness - Proof sketch

(1) S = Fiff SU{—=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
Sk FandSkE-F.

(3) S+ Fiff SU{—=F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume S = F.

Then S U{—F'} is unsatisfiable by (1).
Then S U{—F'} is inconsistent by (4).
Then S F F by (3).

We prove (3) and (4).
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(In)consistency

Definition: A set .S of formulas is inconsistent if there is a formula F
such that S+ F' and S F —F', otherwise it is consistent.

Observe: inconsistency is a purely syntactic notion!!
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Examples of inconsistent sets

o {A —A}

e {-(A— (B—A))}
® {—lB,—IB — B}

° {C,ﬂ(ﬂC — D)}



Important tool: the Deduction Theorem

Theorem: SU{F}FGIiff SFF — G.

Proof: Assume S+ F — G. Then SU{F} + F — G.
Using SU{F'} - F and Modus Ponens we get SU{F'} - G.

Assume S U{F'} - G. Proof by induction on the derivation (length):

Axiom/Hypothesis: G is instance of an axiom or G € SU{F'}.
If /' = G use example of derivation to prove S+ F — F.
Otherwise S F G and by Axiom (I) S+ G — (F — G).

By Modus Ponens we get S - F' — (.

Modus Ponens: Then SU{F} F G is derived by Modus Ponens
from some SU{F}FH — G and SU{F} F H.
By ind. hyp we have S+ F — (H —- G)and S+ F — H.
From Axiom (2) we get
SHF(F—-(H—-G)) - (F—H)—=(F—=G3G)).
Two applications of Modus Ponens yield S - F' — G.
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Consequences of the Deduction Theorem

Lemma l: SU{-F}FFiff SFF

Proof: Assume S U {—F'} F F' holds.

By the Deduction Theorem S+ —F — F.
Using Axiom (b)) we get S+ (=F — F) — F.
By Modus Ponens we get S -+ F.

The other direction is trivial.
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Completeness - Proof of (3)

Assertion (3): S+ Fiff SU{—=F} is inconsistent.

Proof: Assume S~ F'.
Then SU{-F} - F.
Since SU{—=F} F —F, the set SU{—F'} is inconsistent.

Assume S U {—F'} is inconsistent.

Then there is a formula G s.t. SU{—-F}F G and SU{—-F} I =G.
By Axiom (4) we get SU{-F} G — (-G — F).

Two applications of Modus Ponens yield S U {—F'} - F.

Lemma | yields S - F.
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Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.

How do we prove an assertion like this?
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Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment A as follows:

If Ae€S thenset A(A):=1.
If -Ae€S thenset A(A):=0.

Problem: What do we do if neither A € S nor -A € S7
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Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is
consistent and for every formula F' either F' € S or =F € §S.
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Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is
consistent and for every formula F' either F' € S or =F € §S.

We extend S to a maximally consistent set S D S.
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Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

20



Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

(4.1) Every consistent set can be extended to a maximally consistent
set.
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Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

(4.1) Every consistent set can be extended to a maximally consistent
set.

(4.2) Let S be maximally consistent and let .4 be the assignment
given by A(A)=1if AeSand A(A)=0if A¢S.
Then A satisfies S.
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Proof of (4.1) - Preliminaries

Lemma Il: Let S be a consistent set and let F' be an arbitrary
formula. Then: SU{F'} or SU{—=F} (or both) are consistent.

Proof: Assume S is consistent but both SU{F'} and SU {—F'} are
Inconsistent.

Since S U {—F'} is inconsistent we have S - F' by Assertion (3).
Since S U {F'} is inconsistent there is a formula G s.t. SU{F} -G
and SU{F} F =G, and the Deduction Theorem yields S+ F' — G
and S+ F' — —G.

Modus Ponens yields S = G and S F —G.

This contradicts the assumption that S is consistent.
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Proof of (4.1)

Assertion (4.1): Every consistent set can be extended to a maximally
consistent set.

Proof: Let Fy, FY, F5 ... be an enumeration of all formulas. Let
So = S and

) Siu{Fi}  if S;U{F;} consistent
i S; U{—F;} if S;U{—F;} consistent
(this is well defined by Lemma II)

By definition, every \S; is consistent.
Let S = U,fil S;. If S were inconsistent, some finite subset would also

be inconsistent. So S is consistent.
By definition, .S is maximally consistent.
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Proof of (4.2) - Preliminaries

Lemma Ill: Let S be a maximally consistent set:

(1) For every formula F': F' € S iff SF F.

(2) For every formula F: =F € Siff F & S.

(3) For every two formulas F,G: F - Ge Sift FZSorGeS.

Proof: We prove only: if I ¢ S then F' — G € S (others similar).
From —F € S we get:

(-G — —-F) = (F —G)  Axiom (3)

Ot == W N =
N \”nn ”nn \”nn
T 1T 1T 1T T

—F because = F' € S
—F — (-G — —F) Axiom (1))
-G — = F Modus Ponens to 1. & 2.

F—=d Modus Ponens to 3. & 4.
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Proof of (4.2)

Assertion (4.2): Let S by maximally consistent, and let A be the
assignment given by: A(A) =1 iff A€ S. Then A satisfies S.

Proof: Let F' be a formula. We prove: A(F)=1iff F € S.
By induction on the structure of F' (and using Lemma Ill):

Atomic formulas: F' = A. Easy.

Negation: F' = —G. We have: A(F) =1 iff A(G) = 0 iff
GgSiff -GeSiff Fe§.

Implication: F = F; — F,. We have: A(F) =1 iff
A(F), — Fy) = 1iff (A(Fy) = 0 or A(Fy) = 1) iff
(Fl Q/gOI’FQ Eg) iff F7 — F5 EglﬁcFEg
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A Hilbert Calculus for predicate logic

We extend formulas by allowing universal quantification.

Three new axiom schemes:

(6) (Vx F') — F|x/t] for every term t.
(7) Vo (F > @G)) — (Vo F = Vz G).
(8) F — Vx I’ if x does not occur free in F.

Theorem: The extension of the Hilbert Calculus is correct and
complete for predicate logic.
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