Hilbert Calculus

Two kinds of calculi:

- Calculi as basis for automatic techniques Examples: Resolution, DPLL, BDDs
- Calculi formalizing mathematical reasoning (axiom, hypothesis, lemma ..., derivation)
 Examples: Hilbert Calculus, Natural Deduction

Resolution Calculus vs. Hilbert Calculus

Resolution calculus	Hilbert calculus
Proves unsatisfiability	Proves consequence $(F_1, \ldots, F_n \models G)$
Formulas in CNF	Formulas with \neg and \rightarrow
Syntactic derivation	Syntactic derivation of $F_1, \ldots, F_n \vdash G$
of the empty clause from F	from axioms and hypothesis
Goal:	Goal:
automatic proofs	model mathematical reasoning
Completeness proof	Completeness proof
comparatively simple	comparatively involved

Recall: Consequence

A formula G is a consequence or follows from the formulas F_1, \ldots, F_k if every model \mathcal{A} of F_1, \ldots, F_k that is suitable for G is also a model of G

If G is a consequence of F_1, \ldots, F_k then we write $F_1, \ldots, F_k \models G$.

Preliminaries

In the following slides, formulas contain only the operators \neg and \rightarrow . Recall: $F \lor G \equiv \neg F \rightarrow G$ and $F \land G \equiv \neg (F \rightarrow \neg G)$.

The calculus defines a syntactic consequence relation \vdash (notation: $F_1, \ldots, F_n \vdash G$), intended to "mirror" semantic consequence.

We will have:

$$F_1, \ldots, F_n \vdash G \quad \text{iff} \quad F_1, \ldots, F_n \models G$$

(syntactic consequence and semantic consequence will coincide).

Axiom schemes

We take five axiom schemes or axioms, with F, G as place-holders for formulas:

(1)
$$F \to (G \to F)$$

(2) $(F \to (G \to H)) \to ((F \to G) \to (F \to H))$
(3) $(\neg F \to \neg G) \to (G \to F)$
(4) $F \to (\neg F \to G)$
(5) $(\neg F \to F) \to F$

An instance of an axiom is the result of substituting the place-holders of the axiom by formulas.

Easy to see: all instances are valid formulas.

Example: Instance of (4) with
$$\neg A \rightarrow B$$
 and $\neg C$ for F and G :
 $(\neg A \rightarrow B) \rightarrow (\neg (\neg A \rightarrow B) \rightarrow \neg C)$

Derivations in Hilbert calculus

Let S be a set of formulas - also called hypothesis - and let F be a formula. We write $S \vdash F$ and say that F is a syntactic consequence of S in Hilbert Calculus if one of these conditions holds:

Axiom:	F is an instance of an axiom
Hypothesis:	$F \in S$
Modus Ponens:	$S \vdash G \to F$ and $S \vdash G$, i.e. both $G \to F$
	and G are syntactic consequences of S .

Modus Ponens

Derivation rule of the calculus, allowing to generate new syntactic consequences from old ones:

$$\begin{array}{ccccc} S & \vdash & G \to F \\ \hline S & \vdash & G \\ \hline S & \vdash & F \end{array}$$

Example of derivation

1.
$$\vdash A \rightarrow ((B \rightarrow A) \rightarrow A)$$

2. $\vdash (A \rightarrow ((B \rightarrow A) \rightarrow A))$
 \rightarrow
 $((A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A))$
3. $\vdash (A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A)$
4. $\vdash A \rightarrow (B \rightarrow A)$
5. $\vdash A \rightarrow A$

Instance of Axiom (1)

Instance of Axiom (2)Modus Ponens with 1. & 2.Instance of Axiom (1)Modus Ponens with 3. & 4.

Remark: The same derivation works for arbitrary formulas F, Ginstead of A, B, and so we can derive $\vdash F \rightarrow F$ for any formula F. We can therefore see a derivation as a way of producing new axioms (the axiom $F \rightarrow F$ in this case).

Correctness and completeness

Correctness: If F is a syntactic consequence from S, then F is a consequence of S.

Completeness: If F is a consequence of S, then F is a syntactic consequence from S.

Correctness Theorem: Let F be an arbitrary formula, and let S be a set of formulas such that $S \vdash F$. Then $S \models F$.

Proof: Easy induction on the length of the derivation of $S \vdash F$.

Completeness proof: preliminaries

Wie wish to prove: if $S \models F$, then $S \vdash F$. How could this work?

• Induction on the derivation?

 \rightsquigarrow there is no derivation!

• Induction on the structure of the formula F?

For the induction basis we would have to prove for an atomic formula A:

if $S \models A$ then $S \vdash A$.

But how do we construct a derivation of $S \vdash A$ if all we know is $S \models A$?

(1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)
- (4) Unsatisfiable sets are inconsistent. (To be proved!)

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)
- (4) Unsatisfiable sets are inconsistent. (To be proved!)

```
Proof sketch: Assume S \models F.
Then S \cup \{\neg F\} is unsatisfiable by (1).
Then S \cup \{\neg F\} is inconsistent by (4).
Then S \vdash F by (3).
```

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)
- (4) Unsatisfiable sets are inconsistent. (To be proved!)

```
Proof sketch: Assume S \models F.
Then S \cup \{\neg F\} is unsatisfiable by (1).
Then S \cup \{\neg F\} is inconsistent by (4).
Then S \vdash F by (3).
```

We prove (3) and (4).

(In)consistency

Definition: A set S of formulas is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$, otherwise it is consistent.

Observe: inconsistency is a purely syntactic notion!!

Examples of inconsistent sets

- $\{A, \neg A\}$
- $\{\neg(A \to (B \to A))\}$
- $\{\neg B, \neg B \rightarrow B\}$
- $\{C, \neg(\neg C \to D)\}$

Important tool: the Deduction Theorem

Theorem: $S \cup \{F\} \vdash G \text{ iff } S \vdash F \rightarrow G.$

Proof: Assume $S \vdash F \to G$. Then $S \cup \{F\} \vdash F \to G$.

Using $S \cup \{F\} \vdash F$ and Modus Ponens we get $S \cup \{F\} \vdash G$.

Assume $S \cup \{F\} \vdash G$. Proof by induction on the derivation (length):

Axiom/Hypothesis: G is instance of an axiom or $G \in S \cup \{F\}$. If F = G use example of derivation to prove $S \vdash F \rightarrow F$. Otherwise $S \vdash G$ and by Axiom (1) $S \vdash G \rightarrow (F \rightarrow G)$. By Modus Ponens we get $S \vdash F \rightarrow G$.

Modus Ponens: Then $S \cup \{F\} \vdash G$ is derived by Modus Ponens from some $S \cup \{F\} \vdash H \rightarrow G$ and $S \cup \{F\} \vdash H$. By ind. hyp we have $S \vdash F \rightarrow (H \rightarrow G)$ and $S \vdash F \rightarrow H$. From Axiom (2) we get $S \vdash (F \rightarrow (H \rightarrow G)) \rightarrow ((F \rightarrow H) \rightarrow (F \rightarrow G))$. Two applications of Modus Ponens yield $S \vdash F \rightarrow G$.

Consequences of the Deduction Theorem

Lemma I: $S \cup \{\neg F\} \vdash F$ iff $S \vdash F$ Proof: Assume $S \cup \{\neg F\} \vdash F$ holds. By the Deduction Theorem $S \vdash \neg F \rightarrow F$. Using Axiom (5) we get $S \vdash (\neg F \rightarrow F) \rightarrow F$. By Modus Ponens we get $S \vdash F$.

The other direction is trivial.

Completeness - Proof of (3)

Assertion (3): $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent.

Proof: Assume $S \vdash F$. Then $S \cup \{\neg F\} \vdash F$. Since $S \cup \{\neg F\} \vdash \neg F$, the set $S \cup \{\neg F\}$ is inconsistent. Assume $S \cup \{\neg F\}$ is inconsistent.

Then there is a formula G s.t. $S \cup \{\neg F\} \vdash G$ and $S \cup \{\neg F\} \vdash \neg G$. By Axiom (4) we get $S \cup \{\neg F\} \vdash G \rightarrow (\neg G \rightarrow F)$. Two applications of Modus Ponens yield $S \cup \{\neg F\} \vdash F$. Lemma I yields $S \vdash F$.

Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment \mathcal{A} as follows:

If
$$A \in S$$
 then set $\mathcal{A}(A) := 1$.
If $\neg A \in S$ then set $\mathcal{A}(A) := 0$.

Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment \mathcal{A} as follows:

If
$$A \in S$$
 then set $\mathcal{A}(A) := 1$.
If $\neg A \in S$ then set $\mathcal{A}(A) := 0$.

Problem: What do we do if neither $A \in S$ nor $\neg A \in S$?

Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is consistent and for every formula F either $F \in S$ or $\neg F \in S$.

Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is consistent and for every formula F either $F \in S$ or $\neg F \in S$.

We extend S to a maximally consistent set $\overline{S} \supseteq S$.

Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

Completeness - Proof sketch for (4)

- (4) Consistent sets are satisfiable.
- (4.1) Every consistent set can be extended to a maximally consistent set.

Completeness - Proof sketch for (4)

- (4) Consistent sets are satisfiable.
- (4.1) Every consistent set can be extended to a maximally consistent set.
- (4.2) Let S be maximally consistent and let \mathcal{A} be the assignment given by $\mathcal{A}(A) = 1$ if $A \in S$ and $\mathcal{A}(A) = 0$ if $A \notin S$. Then \mathcal{A} satisfies S.

Proof of (4.1) - Preliminaries

Lemma II: Let S be a consistent set and let F be an arbitrary formula. Then: $S \cup \{F\}$ or $S \cup \{\neg F\}$ (or both) are consistent.

Proof: Assume S is consistent but both $S \cup \{F\}$ and $S \cup \{\neg F\}$ are inconsistent.

Since $S \cup \{\neg F\}$ is inconsistent we have $S \vdash F$ by Assertion (3). Since $S \cup \{F\}$ is inconsistent there is a formula G s.t. $S \cup \{F\} \vdash G$ and $S \cup \{F\} \vdash \neg G$, and the Deduction Theorem yields $S \vdash F \rightarrow G$ and $S \vdash F \rightarrow \neg G$.

Modus Ponens yields $S \vdash G$ and $S \vdash \neg G$.

This contradicts the assumption that S is consistent.

Proof of (4.1)

Assertion (4.1): Every consistent set can be extended to a maximally consistent set.

Proof: Let $F_0, F_1, F_2 \dots$ be an enumeration of all formulas. Let $S_0 = S$ and

$$S_{i+1} = \begin{cases} S_i \cup \{F_i\} & \text{if } S_i \cup \{F_i\} \text{ consistent} \\ S_i \cup \{\neg F_i\} & \text{if } S_i \cup \{\neg F_i\} \text{ consistent} \end{cases}$$

(this is well defined by Lemma II)

By definition, every S_i is consistent. Let $\overline{S} = \bigcup_{i=1}^{\infty} S_i$. If \overline{S} were inconsistent, some finite subset would also be inconsistent. So \overline{S} is consistent. By definition, \overline{S} is maximally consistent.

Proof of (4.2) - Preliminaries

Lemma III: Let S be a maximally consistent set:

- (1) For every formula $F: F \in S$ iff $S \vdash F$.
- (2) For every formula $F: \neg F \in S$ iff $F \notin S$.
- (3) For every two formulas $F, G: F \to G \in S$ iff $F \notin S$ or $G \in S$.

Proof: We prove only: if $F \notin S$ then $F \to G \in S$ (others similar). From $\neg F \in S$ we get:

- 1. $S \vdash \neg F$ 2. $S \vdash \neg F \rightarrow (\neg G \rightarrow \neg F)$ 3. $S \vdash \neg G \rightarrow \neg F$ 4. $S \vdash (\neg G \rightarrow \neg F) \rightarrow (F \rightarrow G)$ 5. $S \vdash F \rightarrow G$
- because $\neg F \in S$ Axiom (1) Modus Ponens to 1. & 2. Axiom (3) Modus Ponens to 3. & 4.

Proof of (4.2)

Assertion (4.2): Let S by maximally consistent, and let \mathcal{A} be the assignment given by: $\mathcal{A}(A) = 1$ iff $A \in \overline{S}$. Then \mathcal{A} satisfies S.

Proof: Let F be a formula. We prove: $\mathcal{A}(F) = 1$ iff $F \in \overline{S}$. By induction on the structure of F (and using Lemma III):

Atomic formulas: F = A. Easy.

Negation: $F = \neg G$. We have: $\mathcal{A}(F) = 1$ iff $\mathcal{A}(G) = 0$ iff $G \notin \overline{S}$ iff $\neg G \in \overline{S}$ iff $F \in \overline{S}$.

Implication: $F = F_1 \rightarrow F_2$. We have: $\mathcal{A}(F) = 1$ iff $\mathcal{A}(F_1 \rightarrow F_2) = 1$ iff $(\mathcal{A}(F_1) = 0 \text{ or } \mathcal{A}(F_2) = 1)$ iff $(F_1 \notin \overline{S} \text{ or } F_2 \in \overline{S})$ iff $F_1 \rightarrow F_2 \in \overline{S}$ iff $F \in \overline{S}$.

A Hilbert Calculus for predicate logic

We extend formulas by allowing universal quantification.

Three new axiom schemes:

(6)
$$(\forall x \ F) \rightarrow F[x/t]$$
 for every term t.

(7)
$$(\forall x \ (F \to G)) \to (\forall x \ F \to \forall x \ G).$$

(8)
$$F \to \forall x F$$
 if x does not occur free in F.

Theorem: The extension of the Hilbert Calculus is correct and complete for predicate logic.