Source

G.S. Boolos, J.P. Burgess, R.C Jeffrey: Computability and Logic. Cambridge University Press 2002.

Theories

A signature is a (finite or infinite) set of predicate and function symbols. We fix a signature S. "Formula" means now "formula over the signature S".

A theory is a set of formulas T closed under consequence, i.e., if $F_1, \ldots, F_n \in T$ and $\{F_1, \ldots, F_n\} \models G$ then $G \in T$.

Fact: Let \mathcal{A} be a structure suitable for S. The set F of formulas such that $\mathcal{A}(F)=1$ is a theory.

We call them model-based theories.

Fact: Let \mathcal{F} be a set of closed formulas. The set F of formulas such that $\mathcal{F} \models F$ is a theory.

The signature of arithmetic

The signature S_A of arithmetic contains:

- a constant 0,
- a unary function symbol s,
- two binary function symbols + and ⋅, and
- a binary predicate symbol <.

(slight change over previous definitions)

Arith is the theory containing the set of closed formulas over S_A that are true in the canonical structure.

Arith contains "all the theorems of calculus".

Decidability, consistency, completeness, . . .

A set \mathcal{F} of formulas is decidable if there is an algorithm that decides for every formula F whether $F \in \mathcal{F}$ holds.

Let T be a theory.

T is decidable if it is decidable as a set of formulas.

T is consistent if for every closed formula F either $F \notin T$ or $\neg F \notin T$.

T is complete if for every closed formula F either $F \in T$ or $\neg F \in T$.

T is (finitely) axiomatizable if there is a (finite) decidable set $\mathcal{X} \subseteq T$ of axioms such that every closed formula of T is a consequence of \mathcal{X} .

Conventions and notation

In the following: set of axioms = decidable set of formulas over S_A

 $T_{\mathcal{X}}$ denotes the theory of all closed formulas that are consequences of a set \mathcal{X} of axioms.

Basic facts

Fact: Every theory contains all valid formulas (because they are consequences of the empty set).

Fact: Model-based theories (like Arith) are consistent and complete.

Fact: T is consistent iff there is a closed formula F such that $F \notin T$.

Proof: If T is consistent then $F \notin T$ for some closed F by definition. If T is inconsistent, then there exists a formula F such that $F \in T$ and $\neg F \in T$. Let G be an arbitrary closed formula. Since $F, \neg F \models G$ and T is closed under consequence, we have $G \in T$.

Basic facts

Lemma: If T is axiomatizable and complete, then T is decidable.

Proof: If T inconsistent then T contains all closed formulas, and the algorithm that answers " $F \in T$ " for every input F decides T. If T consistent, let consider the following algorithm:

- Input: F
 Enumerate all syntactic consequences of the axioms of T, and for each new syntactic consequence G do:
 - If G = F halt with " $F \in T$ "
 - If $G = \neg F$ halt with " $F \notin T$ "

Observe: the syntactic consequences of the axioms can be enumerated.

We prove this algorithm is correct:

- If algorithm answers " $F \in T$ ", then $F \in T$.

 If algorithm answers " $F \in T$ ", then F is syntactic consequence, and so consequence of the axioms. Since T is a theory, $F \in T$.
- If algorithm answers " $F \notin T$ ", then $F \notin T$.

 If algorithm answers " $F \notin T$ ", then $\neg F$ is consequence of the axioms and so $\neg F \in T$. By consistency, $F \notin T$.
- The algorithm terminates.

Since T is complete, either $F \in T$ or $\neg F \in T$.

Assume w.l.og. $F \in T$.

Since T is axiomatizable, F is a consequence of the axioms.

So F is a syntactic consequence of the axioms.

So eventually G := F and the algorithm terminates.

Basic facts

Theorem: Arith is undecidable.

Proof: By reduction from the halting problem, similar to undecidability proof for validity of predicate logic.

Theorem: Arith is not axiomatizable.

Proof: Since Arith is undecidable, consistent, and complete, it is not axiomatizable (see Lemma).

Gödel's first incompleteness theorem

Theorem: Let \mathcal{X} be any set of axioms such that $\mathcal{X} \subseteq Arith$.

Then the theory $T_{\mathcal{X}}$ is incomplete.

Proof: Since Arith is not axiomatizable, there is a formula $F \in A$ rith such that $\mathcal{X} \not\models F$ and so $F \notin T_{\mathcal{X}}$.

Assume now $\neg F \in T_{\mathcal{X}}$. Then $\mathcal{X} \models \neg F$ and since $\mathcal{X} \subseteq \text{Arith}$ we get $\neg F \in \text{Arith}$, contradicting $F \in \text{Arith}$.

So $F \notin T_{\mathcal{X}}$ and $\neg F \notin T_{\mathcal{X}}$, which proves that $T_{\mathcal{X}}$ is incomplete.

Gödel's first incompleteness theorem

Observe: $F \in Arith$, i.e., F is true in the canonical structure, but its truth cannot be proved using any set \mathcal{X} of axioms (unless some axiom is itself not true!)

In other words: for every set of true axioms, there are true formulas that cannot be deduced from the axioms

But we have no idea how such formulas look like . . .

Goal: given a set of axioms $\mathcal{X} \subseteq \mathtt{Arith}$, construct a formula $F \in \mathtt{Arith}$ such that $F \notin T_{\mathcal{X}}$

Minimal arithmetic

Minimal arithmetic Q is the axiom-based theory over S_A having the following axioms:

(Q1)
$$\forall x \quad \neg (0 = s(x))$$

(Q2) $\forall x \forall y \quad s(x) = s(y) \rightarrow x = y$
(Q3) $\forall x \quad x + 0 = x$
(Q4) $\forall x \forall y \quad x + s(y) = s(x + y)$
(Q5) $\forall x \quad x \cdot 0 = 0$
(Q6) $\forall x \forall y \quad x \cdot s(y) = (x \cdot y) + x$
(Q7) $\forall x \quad \neg (x < 0)$
(Q8) $\forall x \forall y \quad x < s(y) \leftrightarrow (x < y \lor x = y)$
(Q9) $\forall x \forall y \quad x < y \lor x = y \lor y < x$

Peano arithmetic

Peano arithmetic P is the axiom-based theory over S_A having Q1-Q9 as axioms plus all closed formulas of the form

(I)
$$\forall \mathbf{y}$$
 $F(0, \mathbf{y}) \land \forall x (F(x, \mathbf{y}) \rightarrow F(s(x), \mathbf{y}))$ \rightarrow $\forall x F(x, \mathbf{y})$

where $\mathbf{y} = (y_1, \dots y_n)$.

Observe: I is an axiom scheme; the set of axioms of P is infinite but decidable.

Some theorems of Q (and P)

```
\neg(0=s^n(0)) \text{ for every } n \geq 1 \neg(s^n(0)=s^m(0)) \text{ for every } n, m \geq 1, \ n \neq m \forall x \ x < 1 \leftrightarrow x = 0 \forall x \ x < s^{n+1}(0) \leftrightarrow (x=0 \lor x=s(0) \lor \ldots \lor x=s^n(0)) s^n(0) + s^m(0) = s^l(0) \text{ for every } n, m, l \geq 1 \text{ such that } n+m=l s^n(0) \cdot s^m(0) = s^l(0) \text{ for every } n, m, l \geq 1 \text{ such that } n \cdot m = l
```

Gödel encodings

A Gödel encoding is an injective function that maps every formula over S_A to a natural number called its Gödel number.

Simple Gödel encoding: assign to each symbol of the formula its ASCII code, assign to a formula the concatenation of the ASCII codes of its symbols.

Gödel encodings

Example (Wikipedia): the formula

$$x = y \rightarrow y = x$$

written in ASCII as

$$x=y \Rightarrow y=x$$

corresponds to the sequence

of ASCII codes, and so it is assigned the number

120061121032061062032121061120

Gödel's Gödel encoding

Let p_n denote the n-th prime number.

Gödel's encoding assigns to each symbol λ a number $g(\lambda)$, and to a sequence $\lambda_1 \cdots \lambda_n$ of symbols the number

$$2^{g(\lambda_1)} \cdot 3^{g(\lambda_2)} \cdot 5^{g(\lambda_3)} \cdot \ldots \cdot p_n^{g(\lambda_n)}$$

What are Gödel encodings good for?

A formula F(x) over S_A with a free variable x defines a property of numbers: the property satisfied exactly by the numbers n such that $F(s^n(0))$ is true in the canonical structure.

```
We can easily construct formulas Even(x), Prime(x), Power\_of\_two(x) . . .
```

Via the encoding formulas "are" numbers, and so a formula also defines a property of formulas!

```
numbers \to formulas formula F(x) \to set of numbers \to set of formulas
```

Going further . . .

We can (less easily) construct formulas like

- $First_symbol_is_\forall(x)$
- \bullet $At_least_ten_symbols(x)$
- \bullet Closed(x)
- . . .

that are true i.t.c.s. for $x := s^n(0)$ iff the number n encodes a formula and the formula satisfies the corresponding property.

And even further . . .

We can construct (even less easily) a formula

$$\bullet$$
 $In_{-}Q(x)$

that is true i.t.c.s. for $x = s^n(0)$ iff the number n encodes a closed formula F such that $F \in \mathbb{Q}$.

The reason is

$$F \in \mathbb{Q}$$
 iff $\mathbb{Q}1, \ldots, \mathbb{Q}9 \models F$ iff $\mathbb{Q}1, \ldots, \mathbb{Q}9 \vdash F$

and the derivation procedure amounts to symbol manipulation.

Same for any other set \mathcal{X} of axioms.

Diagonal Lemma

Recall our goal: Given a set of axioms $\mathcal{X} \subseteq \mathtt{Arith}$, construct a formula $F \in \mathtt{Arith}$ such that $F \notin T_{\mathcal{X}}$

Let $\underline{\mathbf{F}}$ denote the term $s^n(0)$ where n is the Gödel encoding of the formula F.

Intuition: $\underline{\mathbf{F}}$ is a "name" we give to F

Lemma (Diagonal Lemma): Let \mathcal{X} be any set of axioms containing Q1, ... Q9. For every formula B(x) there is a closed formula G such that $G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$.

We call G the Gödel formula of B(x).

We have: G true i.t.c.s if and only if G has property B

Intuition: G asserts that G has property B (true or false i.t.c.s.!)

Reaching the goal

```
Theorem: Let \mathcal{X} be any set of axioms containing Q1, ... Q9. Let G_{\mathcal{X}} be the Gödel formula of \neg In_{-}T_{\mathcal{X}}(x). Then G_{\mathcal{X}} \in \operatorname{Arith} \setminus T_{\mathcal{X}}.
```

Proof idea: By definition, $G_{\mathcal{X}}$ is true i.t.c.s iff $G_{\mathcal{X}} \notin T_{\mathcal{X}}$.

If $G_{\mathcal{X}}$ is false i.t.c.s. then $G_{\mathcal{X}} \in T_{\mathcal{X}}$.

Since $\mathcal{X} \subseteq \text{Arith}$, we have $G_{\mathcal{X}} \in \text{Arith}$.

But then, by definition of Arith, G_{χ} is true i.t.c.s.

Contradiction!

So $G_{\mathcal{X}}$ is true i.t.c.s., i.e., $G_{\mathcal{X}} \in \text{Arith}$. But then $G_{\mathcal{X}} \notin T_{\mathcal{X}}$, and so $G_{\mathcal{X}} \in \text{Arith} \setminus T_{\mathcal{X}}$. Done!

Gödel's second incompleteness theorem

For any set of axioms \mathcal{X} containing Q1 we have $0 = s(0) \notin T_{\mathcal{X}}$, and so $T_{\mathcal{X}}$ is consistent iff $0 = s(0) \notin T_{\mathcal{X}}$.

The consistency formula for \mathcal{X} is the formula $\neg In_T_{\mathcal{X}}(0=s(0))$

Intuition: The consistency formula for \mathcal{X} states that $T_{\mathcal{X}}$ is consistent.

Theorem (Gödel's second incompleteness theorem): Let $\mathcal{X} \subseteq \mathtt{Arith}$ be any set of axioms containing P. Then the consistency formula for \mathcal{X} does not belong to $T_{\mathcal{X}}$.

Intuition: the consistency of a theory cannot be derived from the axioms of the theory.

Proving the Diagonal Lemma: Diagonalization

Let F(x) be a formula with a free variable x. The diagonalization of F is the closed formula

$$DiagF := \exists x \ x = \underline{F} \land F(x)$$

Intuition: DiagF asserts that F has property F

Observe: DiagF and $F(\underline{F})$ are logically equivalent, but they have different Gödel numbers.

The representation theorem

Theorem : There is a formula Diag(x,y) such that for every formula F

$$\forall y \ Diag(\underline{\mathbf{F}}, y) \leftrightarrow y = \mathtt{DiagF}$$

can be derived in Q (and so in P).

Proof: Omitted.

Observe: the theorem does not hold for every set of axioms. For instance, it does not hold for the system Q1-Q4, since in that system we cannot infer anything about the product function.

Proof of the Diagonal Lemma I

Lemma: Let \mathcal{X} be any set of axioms containing Q1, ... Q9. For every formula B(y) there is a closed formula G such that $G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$.

Proof: Let $A(x) := \exists y \ (Diag(x, y) \land B(y))$ and let G := DiagA.

Intuition: G asserts that the diagonalization of A (the formula asserting that A satisfies A) satisfies B.

Explicitely:

$$G := \exists x \ (x = \underline{\mathbf{A}} \land A(x)) := \exists x \ (x = \underline{\mathbf{A}} \land \exists y \ (Diag(x, y) \land B(y)))$$

Proof of the Diagonal Lemma II

The formula $G \leftrightarrow \exists y \ (Diag(\underline{A}, y) \land B(y))$ is valid, and so, since valid formulas belong to every theory, we have

$$G \leftrightarrow \exists y \ (Diag(\underline{\mathbf{A}}, y) \land B(y)) \in T_{\mathcal{X}}$$

Since G := DiagA, we have by the representation theorem:

$$\forall y \ (Diag(\underline{\mathbf{A}}, y) \leftrightarrow y = \underline{\mathbf{G}}) \in T_{\mathcal{X}}$$

And so, since $T_{\mathcal{X}}$ is closed under consequence, we get

$$G \leftrightarrow \exists y \ (y = \underline{\mathbf{G}} \ \land \ B(y)) \in T_{\mathcal{X}}$$

and for the same reason

$$G \leftrightarrow B(\underline{\mathbf{G}}) \in T_{\mathcal{X}}$$