Equivalence

Two formulas F and G are (semantically) equivalent if $\mathcal{A}(F)=\mathcal{A}(G)$ for every assignment \mathcal{A} that is suitable for both F and G.

We write $F \equiv G$ to denote that F and G are equivalent.

Exercise

Which of the following equivalences hold?

$$
\begin{aligned}
(A \wedge(A \vee B)) & \equiv A \\
\neg(A \vee B) & \equiv(\neg A \wedge \neg B) \\
(A \wedge(B \vee C)) & \equiv((A \wedge B) \vee C) \\
(A \wedge(B \vee C)) & \equiv((A \wedge B) \vee(A \wedge C))
\end{aligned}
$$

Main logical questions

- Model checking

Let F be a formula and let \mathcal{A} be a suitable assignment.
Does $\mathcal{A}(F)=1$ hold?

- Satisfiability

Let F be a formula. Is F satisfiable ?

- Validity

Let F be a formula. Ist F valid ?

- Consequence

Let F and G be formulas. Does $F \models G$ hold?

- Equivalence

Let F und G be formulas. Does $F \equiv G$ hold?

Observation

The following connections hold:

$$
\begin{array}{lll}
(F \rightarrow G) \text { is valid } & \text { if and only if } & F \models G \\
(F \leftrightarrow G) \text { is valid } & \text { if and only if } & F \equiv G
\end{array}
$$

Reductions between problems (I)

- Validity to Unsatisfiabilty (and back):

$$
\begin{array}{rll}
F \text { valid } & \text { iff } & \neg F \text { unsatisfiable } \\
F \text { unsatisfiable } & \text { iff } & \neg F \text { valid }
\end{array}
$$

- Validity to Consequence:

$$
F \text { valid } \quad \text { iff } \quad \text { true } \models F
$$

- Consequence to Validity:

$$
F \models G \quad \text { iff } \quad F \rightarrow G \text { valid }
$$

Reductions bewteen problems (II)

- Validity to Equivalence:

$$
F \text { valid iff } \quad F \equiv \text { true }
$$

- Equivalence to Validity:

$$
F \equiv G \quad \text { iff } \quad F \leftrightarrow G \text { valid }
$$

Properties of semantic equivalence

Semantic equivalence is an equivalence relation between formulas.
Semantic equivalence is closed under operators:
If $F_{1} \equiv F_{2}$ and $G_{1} \equiv G_{2}$ hold, then $\left(F_{1} \wedge G_{1}\right) \equiv\left(F_{2} \wedge G_{2}\right),\left(F_{1} \vee G_{1}\right) \equiv\left(F_{2} \vee G_{2}\right)$ and $\neg F_{1} \equiv \neg F_{2}$ hold too.

> Equivalence relation + Closure under Operations

Congruence relation

Substitution theorem

Closure under operations can also be formulated this way:
Theorem (substitution theorem)
Let F and G be equivalent formulas. Let H be a formula with (at least) an occurrence of F as subformula. Then H and H^{\prime} are equivalent, where H^{\prime} is the result of substituting an arbitrary occurrence of F in H by G.

Equivalence (I)

Theorem

The following equivalences hold for every formulas F and G :

$$
\begin{aligned}
(F \wedge F) & \equiv F & \\
(F \vee F) & \equiv F & \text { (Idempotence) } \\
(F \wedge G) & \equiv(G \wedge F) & \\
(F \vee G) & \equiv(G \vee F) & \text { (Commutativity) } \\
((F \wedge G) \wedge H) & \equiv(F \wedge(G \wedge H)) & \\
((F \vee G) \vee H) & \equiv(F \vee(G \vee H)) & \text { (Associaativity) } \\
(F \wedge(F \vee G)) & \equiv F & \\
(F \vee(F \wedge G)) & \equiv F & \text { (Absorption) }
\end{aligned}
$$

Equivalences (II)

$$
\begin{aligned}
(F \wedge(G \vee H)) & \equiv((F \wedge G) \vee(F \wedge H)) & \\
(F \vee(G \wedge H)) & \equiv((F \vee G) \wedge(F \vee H)) & \text { (Distributivity) } \\
\neg \neg F & \equiv F & \text { (Double negation) } \\
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) & \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G) & \text { (deMorgan's Laws) } \\
(F \vee G) & \equiv F, \text { if } F \text { is a tautology } & \\
(F \wedge G) & \equiv G, \text { if } F \text { is a tautologie } & \text { (Tautology Laws) } \\
(F \vee G) & \equiv G, \text { if } F \text { is unsatisfiable } & \\
(F \wedge G) & \equiv F, \text { if } F \text { is unsatisfiable } & \text { (Unsatisfiability Laws) }
\end{aligned}
$$

Normal forms (I)

Definition (Normal forms)
A literal is an atomic formula or the negation of an atomic formula. (In the former case the literal is positive and negative in the latter).

A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals:

$$
F=\left(\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

Normal forms (II)

A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$
F=\left(\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)\right),
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

Normalization methods for CNF

1. Substitute every occurrence of a subformula of the form

$$
\begin{array}{rll}
\neg \neg G & \text { by } & G \\
\neg(G \wedge H) & \text { by } & (\neg G \vee \neg H) \\
\neg(G \vee H) & \text { by } & (\neg G \wedge \neg H)
\end{array}
$$

until no such formulas occur.
2. Substitute in every occurrence of a subformula of the form

$$
\begin{array}{lll}
(F \vee(G \wedge H)) & \text { durch } & ((F \vee G) \wedge(F \vee H)) \\
((F \wedge G) \vee H) & \text { durch } & ((F \vee H) \wedge(G \vee H))
\end{array}
$$

until no such formulas occur.

Derivation from the truth table

DNF: Each row of the truth table with value 1 yields a conjunction, a 0 in column A yields $\neg A$, and a 1 yields A

$$
\begin{aligned}
& (\neg A \wedge \neg B \wedge \neg C) \vee(\neg A \wedge B \wedge C) \\
& \vee(A \wedge \neg B \wedge \neg C) \vee(A \wedge B \wedge C)
\end{aligned}
$$

CNF: Each row of the truth table with value 0 yields a disjunction, a 0 in column A yields A, and a 1 yields $\neg A$

$$
\begin{aligned}
& (A \vee B \vee \neg C) \wedge(A \vee \neg B \vee C) \\
& \wedge(\neg A \vee B \vee \neg C) \wedge(\neg A \vee \neg B \vee C)
\end{aligned}
$$

Precedence

Operator precedence:

$$
\begin{array}{ll}
\leftrightarrow & \text { binds weaker than } \\
\rightarrow & \text { which binds weaker than } \\
\vee & \text { which binds weaker than } \\
\wedge & \text { which binds weaker than } \\
\neg & .
\end{array}
$$

So we have

$$
A \leftrightarrow B \vee \neg C \rightarrow D \wedge \neg E \equiv(A \leftrightarrow((B \vee \neg C) \rightarrow(D \wedge \neg E)))
$$

But: well chosen parenthesis help to visually parse formulas.

