Equivalence

Two formulas F and G are (semantically) equivalent if $\mathcal{A}(F) = \mathcal{A}(G)$ for every assignment \mathcal{A} that is suitable for both F and G. We write $F \equiv G$ to denote that F and G are equivalent.

Exercise

Which of the following equivalences hold?

$$(A \land (A \lor B)) \equiv A$$

$$\neg (A \lor B) \equiv (\neg A \land \neg B)$$

$$(A \land (B \lor C)) \equiv ((A \land B) \lor C)$$

$$(A \land (B \lor C)) \equiv ((A \land B) \lor (A \land C))$$

Main logical questions

• Model checking

Let F be a formula and let \mathcal{A} be a suitable assignment. Does $\mathcal{A}(F) = 1$ hold?

• Satisfiability

Let F be a formula. Is F satisfiable ?

• Validity

Let F be a formula. Ist F valid ?

• Consequence

Let F and G be formulas. Does $F \models G$ hold?

• Equivalence

Let F und G be formulas. Does $F \equiv G$ hold?

Observation

The following connections hold:

$$(F \to G)$$
 is valid if and only if $F \models G$
 $(F \leftrightarrow G)$ is valid if and only if $F \equiv G$

Reductions between problems (I)

• Validity to Unsatisfiability (and back):

F valid iff $\neg F$ unsatisfiable F unsatisfiable iff $\neg F$ valid

• Validity to Consequence:

$$F$$
 valid iff $\mathbf{true} \models F$

• Consequence to Validity:

$$F \models G$$
 iff $F \rightarrow G$ valid

Reductions bewteen problems (II)

• Validity to Equivalence:

F valid iff $F \equiv \mathbf{true}$

• Equivalence to Validity:

 $F \equiv G$ iff $F \leftrightarrow G$ valid

Properties of semantic equivalence

Semantic equivalence is an equivalence relation between formulas. Semantic equivalence is closed under operators:

If $F_1 \equiv F_2$ and $G_1 \equiv G_2$ hold, then $(F_1 \wedge G_1) \equiv (F_2 \wedge G_2)$, $(F_1 \vee G_1) \equiv (F_2 \vee G_2)$ and $\neg F_1 \equiv \neg F_2$ hold too.

Equivalence relation + Closure under Operations = Congruence relation

Substitution theorem

Closure under operations can also be formulated this way:

Theorem (substitution theorem)

Let F and G be equivalent formulas. Let H be a formula with (at least) an occurrence of F as subformula. Then H and H' are equivalent, where H' is the result of substituting an arbitrary occurrence of F in H by G.

Equivalence (I)

Theorem

The following equivalences hold for every formulas F and G:

$$(F \land F) \equiv F$$

$$(F \lor F) \equiv F$$

$$(F \land G) \equiv (G \land F)$$

$$(F \lor G) \equiv (G \lor F)$$

$$(F \land G) \land H) \equiv (F \land (G \land H))$$

$$(F \lor G) \lor H) \equiv (F \lor (G \lor H))$$

$$(F \lor G) \lor H) \equiv F$$

$$(F \lor (F \land G)) \equiv F$$

$$(F \lor (F \land G)) \equiv F$$

$$(Absorption)$$

Equivalences (II)

 $(F \land (G \lor H)) \equiv ((F \land G) \lor (F \land H))$ $(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$ (Distributivity) $\neg \neg F \equiv F$ (Double negation) $\neg (F \land G) \equiv (\neg F \lor \neg G)$ $\neg (F \lor G) \equiv (\neg F \land \neg G)$ (deMorgan's Laws) $(F \lor G) \equiv F$, if F is a tautology $(F \wedge G) \equiv G$, if F is a tautologie (Tautology Laws) $(F \lor G) \equiv G$, if F is unsatisfiable $(F \wedge G) \equiv F$, if F is unsatisfiable (Unsatisfiability Laws)

Normal forms (I)

Definition (Normal forms)

A literal is an atomic formula or the negation of an atomic formula. (In the former case the literal is positive and negative in the latter).

A formula F is in conjunctive normal form (**CNF**) if it is a conjunction of disjunctions of literals:

$$F = (\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})),$$

where $L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$

Normal forms (II)

A formula F is in disjunctive normal form (**DNF**) if it is a disjunction of conjunctions of literals:

$$F = \left(\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} L_{i,j}\right)\right),$$

where $L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$

Normalization methods for CNF

1. Substitute every occurrence of a subformula of the form

$$\neg \neg G \quad \text{by} \quad G$$
$$\neg (G \land H) \quad \text{by} \quad (\neg G \lor \neg H)$$
$$\neg (G \lor H) \quad \text{by} \quad (\neg G \land \neg H)$$

until no such formulas occur.

2. Substitute in every occurrence of a subformula of the form

$$(F \lor (G \land H)) \quad \mathsf{durch} \quad ((F \lor G) \land (F \lor H))$$
$$((F \land G) \lor H) \quad \mathsf{durch} \quad ((F \lor H) \land (G \lor H))$$

until no such formulas occur.

Derivation from the truth table

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

DNF: Each row of the truth table with value 1 yields a conjunction, a 0 in column A yields $\neg A$, and a 1 yields A

 $(\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land C)$ $\lor (A \land \neg B \land \neg C) \lor (A \land B \land C)$

CNF: Each row of the truth table with value 0 yields a disjunction, a 0 in column A yields A, and a 1 yields $\neg A$

 $(A \lor B \lor \neg C) \land (A \lor \neg B \lor C)$ $\land (\neg A \lor B \lor \neg C) \land (\neg A \lor \neg B \lor C)$

Precedence

Operator precedence:

- $\leftrightarrow \quad \text{binds weaker than}$
- \rightarrow which binds weaker than
- \vee which binds weaker than
- \wedge $\;$ which binds weaker than

So we have

 $A \leftrightarrow B \lor \neg C \to D \land \neg E \equiv (A \leftrightarrow ((B \lor \neg C) \to (D \land \neg E)))$

But: well chosen parenthesis help to visually parse formulas.

-