
Equivalence

Two formulas F and G are (semantically) equivalent if A(F ) = A(G)

for every assignment A that is suitable for both F and G.

We write F ≡ G to denote that F and G are equivalent.
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Exercise

Which of the following equivalences hold?

(A ∧ (A ∨ B)) ≡ A

¬(A ∨ B) ≡ (¬A ∧ ¬B)

(A ∧ (B ∨ C)) ≡ ((A ∧ B) ∨ C)

(A ∧ (B ∨ C)) ≡ ((A ∧ B) ∨ (A ∧ C))
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Main logical questions

• Model checking

Let F be a formula and let A be a suitable assignment.

Does A(F ) = 1 hold?

• Satisfiability

Let F be a formula. Is F satisfiable ?

• Validity

Let F be a formula. Ist F valid ?

• Consequence

Let F and G be formulas. Does F |= G hold?

• Equivalence

Let F und G be formulas. Does F ≡ G hold?
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Observation

The following connections hold:

(F → G) is valid if and only if F |= G

(F ↔ G) is valid if and only if F ≡ G
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Reductions between problems (I)

• Validity to Unsatisfiabilty (and back):

F valid iff ¬F unsatisfiable

F unsatisfiable iff ¬F valid

• Validity to Consequence:

F valid iff true |= F

• Consequence to Validity:

F |= G iff F → G valid
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Reductions bewteen problems (II)

• Validity to Equivalence:

F valid iff F ≡ true

• Equivalence to Validity:

F ≡ G iff F ↔ G valid
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Properties of semantic equivalence

Semantic equivalence is an equivalence relation between formulas.

Semantic equivalence is closed under operators:

If F1 ≡ F2 and G1 ≡ G2 hold, then

(F1 ∧ G1) ≡ (F2 ∧ G2), (F1 ∨ G1) ≡ (F2 ∨ G2) and ¬F1 ≡ ¬F2

hold too.

Equivalence relation + Closure under Operations

=

Congruence relation
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Substitution theorem

Closure under operations can also be formulated this way:

Theorem (substitution theorem)

Let F and G be equivalent formulas. Let H be a formula with (at

least) an occurrence of F as subformula. Then H and H ′ are

equivalent, where H ′ is the result of substituting an arbitrary

occurrence of F in H by G.
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Equivalence (I)

Theorem

The following equivalences hold for every formulas F and G:

(F ∧ F ) ≡ F

(F ∨ F ) ≡ F (Idempotence)

(F ∧ G) ≡ (G ∧ F )

(F ∨ G) ≡ (G ∨ F ) (Commutativity)

((F ∧ G) ∧ H) ≡ (F ∧ (G ∧ H))

((F ∨ G) ∨ H) ≡ (F ∨ (G ∨ H)) (Associativity)

(F ∧ (F ∨ G)) ≡ F

(F ∨ (F ∧ G)) ≡ F (Absorption)
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Equivalences (II)

(F ∧ (G ∨ H)) ≡ ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) ≡ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

¬¬F ≡ F (Double negation)

¬(F ∧ G) ≡ (¬F ∨ ¬G)

¬(F ∨ G) ≡ (¬F ∧ ¬G) (deMorgan’s Laws)

(F ∨ G) ≡ F , if F is a tautology

(F ∧ G) ≡ G, if F is a tautologie (Tautology Laws)

(F ∨ G) ≡ G, if F is unsatisfiable

(F ∧ G) ≡ F , if F is unsatisfiable (Unsatisfiability Laws)
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Normal forms (I)

Definition (Normal forms)

A literal is an atomic formula or the negation of an atomic formula.

(In the former case the literal is positive and negative in the latter).

A formula F is in conjunctive normal form (CNF) if it is a

conjunction of disjunctions of literals:

F = (
n∧

i=1

(
mi∨

j=1

Li,j)),

where Li,j ∈ {A1, A2, · · ·} ∪ {¬A1,¬A2, · · ·}
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Normal forms (II)

A formula F is in disjunctive normal form (DNF) if it is a disjunction

of conjunctions of literals:

F = (
n∨

i=1

(
mi∧

j=1

Li,j)),

where Li,j ∈ {A1, A2, · · ·} ∪ {¬A1,¬A2, · · ·}
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Normalization methods for CNF

1. Substitute every occurrence of a subformula of the form

¬¬G by G

¬(G ∧ H) by (¬G ∨ ¬H)

¬(G ∨ H) by (¬G ∧ ¬H)

until no such formulas occur.

2. Substitute in every occurrence of a subformula of the form

(F ∨ (G ∧ H)) durch ((F ∨ G) ∧ (F ∨ H))

((F ∧ G) ∨ H) durch ((F ∨ H) ∧ (G ∨ H))

until no such formulas occur.
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Derivation from the truth table

A B C F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

DNF: Each row of the truth table with value 1

yields a conjunction, a 0 in column A yields

¬A, and a 1 yields A

(¬A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ C)

∨ (A ∧ ¬B ∧ ¬C) ∨ (A ∧ B ∧ C)

CNF: Each row of the truth table with value 0

yields a disjunction, a 0 in column A yields A,

and a 1 yields ¬A

(A ∨ B ∨ ¬C) ∧ (A ∨ ¬B ∨ C)

∧ (¬A ∨ B ∨ ¬C) ∧ (¬A ∨ ¬B ∨ C)
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Precedence

Operator precedence:

↔ binds weaker than

→ which binds weaker than

∨ which binds weaker than

∧ which binds weaker than

¬ .

So we have

A ↔ B ∨ ¬C → D ∧ ¬E ≡ (A ↔ ((B ∨ ¬C) → (D ∧ ¬E)))

But: well chosen parenthesis help to visually parse formulas.
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