
Expressiveness of predicate logic: Some motivation

In computer science the analysis of the expressiveness of predicate

logic (a.k.a. first-order logic) is of particular importance, for instance

• In database theory (where finite models are being studied): can

every desirable property be expressed in predicate logic/ SQL?

• Hardware/software verification: Which properties of systems can

be expressed in predicate logic?

• Formal language theory: Which language class corresponds to

the languages expressible in predicate logic (over words,

trees,...)?

1

Expressiveness: Some examples

Let R be a binary relational symbol and let f be a unary function

symbol and let A be a suitable structure for {R, f}.

Expressing “RA is an equivalence relation”:

∀x∀y∀z (R(x, x) ∧ (R(x, y) → R(y, x)) ∧ (R(x, y) ∧R(y, z) → R(x, z)))

Expressing “fA is injective”:

∀x∀y (f(x) = f(y) → x = y)

Expressing “RA contains no directed triangle”:

∀x∀y∀z (x 6= y ∧ y 6= z ∧ x 6= z ∧ R(x, y) ∧ R(y, z)) → ¬R(z, x))

2

Isomorphic structures

Let S be a signature and let A and B be suitable for S.

Then we say that A and B are isomorphic (w.r.t. S) if there is an

isomorphism between A and B, i.e. a bijection π : UA → UB such

that

• for each n-ary functional symbol f ∈ S and for each

u1, . . . , un ∈ UA we have

π(fA(u1, . . . , un)) = fB(π(u1), . . . , π(un)) and

• for each n-ary relational symbol and for each u1, . . . , un ∈ UA

we have (u1, . . . , un) ∈ RA if and only if

(π(u1), . . . , π(un)) ∈ RB.

We also write A ≃ B in case A and B are isomorphic.

3

Properties of predicate logic

Let S be a signature. An S-property is a class of structures suitable

for S that is closed under isomorphism.

A property P is expressible in predicate logic if there exists a sentence

F over the signature S such that for each suitable structure A we

have A ∈ P if and only A |= F .

• P1 = {A | RA is an equivalence relation}

• P2 = {A | fA is injective}

• P3 = {A | RA contains no directed triangle}

• ...

4

Expressiveness: What do we know?

Löwenheim-Skolem’s theorem and related results delivered the

following inexpressibility results (of interest in mathematics):

• Finiteness of structures

• Countability/uncountability of structures.

Exercise.

However, in computer science other properties are often of interest.

• Proving expressibility of a property is often easier than showing

inexpressibility.

• → New techniques are required for showing inexpressibility

results (in particular on finite structures).

5

Ehrenfeucht-Fräıssé games

Ehrenfeucht-Fräıssé games provide an elegant proof technique for

proving inexpressibility results of predicate logic.

Good news for computer science: Ehrenfeucht-Fräıssé games can be

applied both on infinite and on finite structures.

The latter is not true for other results that we have proven (such as

compactness, recursive enumerability of tautologies).

6

Ehrenfeucht-Fräıssé games

• Two players: Spoiler and Duplicator.

• The game board consists of two structures A and B over some

signature S.

• The players move alternatingly and Spoiler begins.

• The number of rounds (denoted by k ∈ N) is fixed a priori.

• In each round Spoiler first chooses a structure (A or B), and

then an element of the universe of that structure. Duplicator

answers with an element of the universe of the other structure.

• Intuition: Spoiler wants to show that A and B are “different”,

whereas Duplicator wants to show that A and B are “similar”.

• Winning condition to be defined on next slide.

7

Restricted structures and partial isomorphisms

For simplicity, we only treat signatures without functional symbols.

Let A be a structure and let V ⊆ UA. Then A ↾V denotes the

restriction of A on V :

• Universe UA↾V = V

• for all n-ary relational symbols R:

RA↾V = {(a1, . . . , an) ∈ RA | a1, . . . , an ∈ V }

Let A and B be structures suitable for some signature S and let

δ : UA → UB be a partial function with domain dom(δ) and range

ran(δ). Then δ is called partial isomorphism if δ is an isomorphism

from A ↾dom(δ)
to B ↾ran(δ).

8

Winning condition of EF games

Who wins an EF game?

• Assume all k rounds have been played and in round i elements

ai ∈ UA and bi ∈ UB have been selected.

• If the set

{(a1, b1), . . . , (ak, bk)}

is a partial isomorphism, then Duplicator wins.

• Otherwise Spoiler wins.

We are less interested in the winner in a simple game but rather in

the player that has a winning strategy.

9

Winning strategies in EF games

• Let us denote the k round game on A and B by Gk(A,B).

• A player has a winning strategy if she/he can win the game for

every possible moves of the other player.

• Winning strategies can be depicted by “game trees” of depth k.

• For each game Gk(A,B) Spoiler or Duplicator has a winning

strategy (a.k.a. determinacy: this is the case for every two-player

game of finite duration that admits no draws).

10

Winning strategies in EF games

Note that

• alternating moves correspond to quantifier alternations and

• Winning strategies of Spoiler and Duplicator are dual.

Winning strategy for Spoiler:

• ∃ Spoiler move ∀ Duplicator moves ∃ Spoiler move · · ·

· · · ∀ Duplicator moves: the game yields no partial isomorphism.

Winning strategy for Duplicator:

• ∀ Spoiler moves ∃ Duplicator move ∀ Spoiler moves · · ·

· · · ∃ Duplicator move: the game yields a partial isomorphism.

11

Quantifier rank

The connection of EF games and predicate logic will be established

by taking the quantifier rank of formulas into account.

The quantifier rank qr(F) of a formula F is the nesting depth of

quantifiers, more formally

• qr(F) = 0 if F is quantifier-free,

• qr(¬F) = qr(F),

• qr(F ∧G) = qr(F ∨G) = max{qr(F), qr(G)}, and

• qr(∃xF) = qr(∀xF) = qr(F) + 1.

Example:

qr(∃x(∀yP (x, y) ∨ ∃z∀yQ(x, y, z))) = 3

12

Quantifier rank

Lemma: Let S be any finite signature, n some arity and k some

quantifier rank. Then there are only finitely many pairwise

inequivalent formulas F over the signature S having m free variables

and quantifier rank k.

Example. Assume S = {P}, where P has arity 1.

For k = 0 there are four equivalence classes:

P (x), ¬P (x), P (x) ∧ ¬P (x), P (x) ∨ ¬P (x)

For instance P (x) ∨ P (x) ≡ P (x).

For k = 1 and n = 1 there are already 14 equivalence classes!

13

Ehrenfeucht-Fräıssé Theorem

Theorem Let A and B be structures over S. For each k ≥ 0 the

following two statements are equivalent:

(1) A |= F if and only B |= F for all sentences F over S satisfying

qr(F) ≤ k.

(2) Duplicator has a winning strategy in Gk(A,B).

To prove the theorem by induction we have to consider games in

which a certain number of rounds have already been played:

• Assume after i moves position {(a1, b1), . . . , (ai, bi)} has been

reached.

• The remaining game with ℓ moves is denoted by

Gℓ(A, a1, . . . , ai,B, b1, . . . bi).

• Winning strategies for subgames are defined analogously as for

the whole game.

14

Ehrenfeucht-Fräıssé Theorem

We will prove the following more general statement by induction on k.

Theorem. Assume A and B are structures over S and let

a = a1, . . . , ar ∈ UA and let b = b1, . . . , br ∈ UB. Then for each

k ≥ 0 the following statements are equivalent:

(1) A[x/a] |= F and B[x/b] 6|= F for a formula F over S with

qr(F) ≤ k and free variables x.

(2) Spoiler has a winning strategy in Gk(A, a,B, b).

Please note:

• We consider games that already have some history.

• Winning strategies for Spoiler and distinguishability instead of

winning strategies for Duplicator and indistinguishability.

The upper theorem obviously implies the Ehrenfeucht-Fräıssé

Theorem.

15

Methodology Theorem

The following theorem is a basis for proving non-expressibility via EF

games.

Theorem. Let P be a property. Assume for each k ≥ 0 there are

structures Ak and Bk satisfying

(1) Ak ∈ P and Bk 6∈ P and

(2) Duplicator has a winning strategy for Gk(Ak,Bk).

Then P is not expressible in predicate logic.

This proof prinicple works for any class C of structures (for instance

all finite structures) as long as the Ak and Bk are from C.

16

Parity

Recall: Predicate logic can count up to any constant c ∈ N:

∀x0 · · · ∀xc

(

∨

0≤i<j≤c

xi = xj

)

Consider the following properties:

• FINITE = {A : |UA| is finite}.

• EVEN = {A : |UA| is finite and even} and

ODD = {A : |UA| is finite and odd}.

Theorem. For any subset X of infinite structures neither EVEN ∪X

nor ODD ∪X are expressible in predicate logic, neither in the class of

all structures nor in the class of all finite structures.

17

Connectivity

An undirected graph G = (V,E) is connected if for any two v, v′ ∈ V

there exists a sequence v0, . . . , vn ∈ V (n ≥ 0) such that v0 = v,

vn = v′ and (vi−1, vi) for all i ∈ {1, . . . , n}.

We show that connectivity is a property inexpressible in predicate

logic.

We choose undirected graphs Ak and Bk such that:

• Ak has a cycle of length 2k (and hence is connected)

• Bk is the disjoint union of two cycles of length 2k each (and

hence not connected).

We have to prove: Duplicator has a winning strategy for Gk(Ak,Bk).

18

Connectivity

For two nodes u and v of a graph G = (V,E) let d(u, v) denote

• the length of a shortest path from u to v if such a path exists

and

• d(u, v) = ∞ if such a path does not exist.

For ℓ ≥ 0, let Nℓ(u) = {v ∈ V | d(u, v) ≤ ℓ} denote the

neighborhood of radius ℓ around u.

Lemma. Duplicator has a strategy in Gk(Ak,Bk) such that after i

moves a configuration {(a1, b1), . . . , (ai, bi)} is reached such that for

all 1 ≤ j < ℓ ≤ i we have

d(aj, aℓ) = d(bj, bℓ) or d(aj, aℓ), d(bj, bℓ) > 2k−i (⋆)

Corollary. Connectivity is not expressible in predicate logic.

19

Transitive Closure

For many applications it is helpful to access the transitive closure of a

binary relation.

Example in databases: Given a database of direct flight connections

of an airline. The transitive closure comprises all connections between

airport (by possibly taking transfer flights).

Lemma. Assume S = {E} for a binary relational symbol E. There is

no formula F (x, y) in predicate logic such that for all structures A

suitable for S we have for all a, b ∈ UA:

A[x/a,y/b] |= F ⇔ there is a path from a to b in A

20

Further inexpressibility results

The following properties are also not expressible in predicate logic:

• Acyclicity

• Being a tree

• Planarity

• k-colorability for each k ≥ 2

• · · ·

21

	Expressiveness of predicate logic: Some motivation
	Expressiveness: Some examples
	Isomorphic structures
	Properties of predicate logic
	Expressiveness: What do we know?
	Ehrenfeucht-Fra"iss{'e} games
	Ehrenfeucht-Fra"iss{'e} games
	Restricted structures and partial isomorphisms
	Winning condition of EF games
	Winning strategies in EF games
	Winning strategies in EF games
	Quantifier rank
	Quantifier rank
	Ehrenfeucht-Fra"iss{'e} Theorem
	Ehrenfeucht-Fra"iss{'e} Theorem
	Methodology Theorem
	Parity
	Connectivity
	Connectivity
	Transitive Closure
	Further inexpressibility results

