Clause representation of CNF formulas

• Clause: set of literals (disjunction).

 $\{A, B\}$ stands for $(A \lor B)$.

• Formula: set of clauses (conjunction).

 $\{\{A, B\}, \{\neg A, B\}\}$ stands for $((A \lor B) \land (\neg A \lor B))$.

The empty clause stands for false. The empty formula stands for true.

The DPLL algorithm

- Developed by Davis, Putman, Loveland und Logemann
- Basis for the most efficient of today's solvers.
- Based on the following ideas for checking satisfiability of a CNF formula *F*:
 - If F is empty, then F is satisfiable.
 - If F contains the empty clause, then F is not satisfiable.
 - If $\{L\} \in F$ for some literal L, then whenever $\mathcal{A} \models F$ we must have $\mathcal{A} \models L$ (and we can remove every clause containing L and every occurrence of \overline{L} in any clause of F).
 - If a literal L appears nowhere in F, then we can safely remove each clause of F that contains \overline{L} .
 - Otherwise we apply brute-force.

Removing literals and suitable clauses

Let L be a literal that appears in a CNF formula F.

By F_L we denote the formula one obtains from F by

- removing each clause of F that contains L and
- removing each occurrence of \overline{L} in F.

Lemma (exercise) Let L be a literal that appears in F. Then the following holds:

(L1) If $\{L\} \in F$, then F is satisfiable if and only if F_L is satisfiable.

- (L2) If L appears in F but not \overline{L} , then F is satisfiable if and only if F_L is satisfiable.
- (L3) F is satisfiable if and only if F_L is satisfiable or $F_{\overline{L}}$ is satisfiable.

procedure $\mathsf{DPLL}(F)$

- if F is the empty formula then return "yes"
- else if F contains the empty clause then return "no"
- else if $\{L\} \in F$ for some literal L then return DPLL (F_L)
- else if L appears in F but not \overline{L} then return DPLL(F_L)

else select literal L appearing in ${\cal F}$

if $DPLL(F_L) =$ "yes" then return "yes"

else return $\mathsf{DPLL}(F_{\overline{L}})$

The DPLL algorithm: Termination and complexity

The weight of a clause $C = \{L_1, \ldots, L_k\}$ is defined as ||C|| = k.

The weight of a CNF formula $F = \{C_1, \ldots, C_k\}$ is defined as $\|F\| = k + \sum_{i=1}^k \|C_i\|.$

Note that $||F|| \leq 2|F|$.

Lemma: If on input F the DPLL algorithm recursively calls DPLL(G), then ||G|| < ||F||.

Proof: Simple inspection of the DPLL algorithm and definition of F_L for literals L.

Corollary: Since ||F|| = 0 iff F is the empty formula, it follows that the recursion depth of the DPLL algorithm on input F is bounded by 2|F|.

Corollary: The running time of the DPLL algorithm on input F is bounded by $2^{O(|F|)}$.

The DPLL algorithm: Correctness

Lemma: On input F the DPLL algorithm returns "yes" if and only if F is satisfiable.

Proof: By induction on the recursion depth of algorithm DPLL on input F.

Induction base. If the recursion depth is 0, then either (i) F is the empty formula and thus satisfiable; DPLL returns "yes" in this case, as required, or (ii) F contains an empty clause and thus F is unsatisfiable; DPLL returns "no" in this case, as required.

Induction step. The cases when $\{L\} \in F$ for some literal L or when L appears in F but not \overline{L} for some literal L follow from induction hypothesis and (L2) and (L3), respectively.

The remaining case (F is satisfiable if and only F_L is satisfiable or $F_{\overline{L}}$ is satisfiable) follows from induction hypothesis and (L3).