
Clause representation of CNF formulas

• Clause: set of literals (disjunction).

{A,B} stands for (A ∨ B).

• Formula: set of clauses (conjunction).

{{A,B}, {¬A,B}} stands for ((A ∨ B) ∧ (¬A ∨B)).

The empty clause stands for false.

The empty formula stands for true.

1

The DPLL algorithm

• Developed by Davis, Putman, Loveland und Logemann

• Basis for the most efficient of today’s solvers.

• Based on the following ideas for checking satisfiability of a CNF

formula F :

− If F is empty, then F is satisfiable.

− If F contains the empty clause, then F is not satisfiable.

− If {L} ∈ F for some literal L, then whenever A |= F we

must have A |= L (and we can remove every clause

containing L and every occurrence of L in any clause of F).

− If a literal L appears nowhere in F , then we can safely

remove each clause of F that contains L.

− Otherwise we apply brute-force.

2

Removing literals and suitable clauses

Let L be a literal that appears in a CNF formula F .

By FL we denote the formula one obtains from F by

• removing each clause of F that contains L and

• removing each occurrence of L in F .

Lemma (exercise) Let L be a literal that appears in F . Then the

following holds:

(L1) If {L} ∈ F , then F is satisfiable if and only if FL is satisfiable.

(L2) If L appears in F but not L, then F is satisfiable if and only if

FL is satisfiable.

(L3) F is satisfiable if and only if FL is satisfiable or F
L
is satisfiable.

3

Davis-Putnam-Logemann-Loveland algorithm

procedure DPLL(F)

if F is the empty formula then return “yes”

else if F contains the empty clause then return “no”

else if {L} ∈ F for some literal L then return DPLL(FL)

else if L appears in F but not L then return DPLL(FL)

else select literal L appearing in F

if DPLL(FL)= “yes” then return“yes”

else return DPLL(F
L
)

4

The DPLL algorithm: Termination and complexity

The weight of a clause C = {L1, . . . , Lk} is defined as ||C|| = k.

The weight of a CNF formula F = {C1, . . . , Ck} is defined as

||F ||= k +
∑

k

i=1 ||Ci||.

Note that ||F || ≤ 2|F |.

Lemma: If on input F the DPLL algorithm recursively calls DPLL(G),

then ||G|| < ||F ||.

Proof: Simple inspection of the DPLL algorithm and definition of FL

for literals L.

Corollary: Since ||F || = 0 iff F is the empty formula, it follows that

the recursion depth of the DPLL algorithm on input F is bounded by

2|F |.

Corollary: The running time of the DPLL algorithm on input F is

bounded by 2O(|F |).

5

The DPLL algorithm: Correctness

Lemma: On input F the DPLL algorithm returns “yes” if and only if

F is satisfiable.

Proof: By induction on the recursion depth of algorithm DPLL on

input F .

Induction base. If the recursion depth is 0, then either (i) F is the

empty formula and thus satisfiable; DPLL returns “yes” in this case,

as required, or (ii) F contains an empty clause and thus F is

unsatisfiable; DPLL returns “no” in this case, as required.

Induction step. The cases when {L} ∈ F for some literal L or when

L appears in F but not L for some literal L follow from induction

hypothesis and (L2) and (L3), respectively.

The remaining case (F is satisfiable if and only FL is satisfiable or F
L

is satisfiable) follows from induction hypothesis and (L3).

6

	Clause representation of 	extbf {CNF} formulas
	The DPLL algorithm
	Removing literals and suitable clauses
	Davis-Putnam-Logemann-Loveland algorithm
	The DPLL algorithm: Termination and complexity
	The DPLL algorithm: Correctness

