
Herbrand universe

The Herbrand universe D(F ) of a closed formula F in Skolem form is

the set of all terms without variables that can be constructed using

the function symbols and constants of F .

In the special case that F contains no constants, we first pick an

arbitrary constant, say a, and then construct the variable-free terms.

Formally, D(F ) is inductively defined as follows:

(1) All constants occurring in F belong to D(F ); if no constant

occurs in F , then a ∈ D(F ).

(2) For every n-ary function symbol f occurring in F , if

t1, t2, . . . , tn ∈ D(F ) then f(t1, t2, . . . , tn) ∈ D(F ).
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Herbrand structure

Let F be a closed formula in Skolem form. A structure A = (UA, IA)

suitable for f is a Herbrand structure for F if it satisfies the following

conditions:

(1) UA = D(F ), and

(2) for every n-ary function symbol f occurring in F and every

t1, t2, . . . , tn ∈ D(F ): fA(t1, t2, . . . , tn) = f(t1, t2, . . . , tn).
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Fundamental theorem of predicate logic

Theorem: A closed formula F in Skolem form is satisfiable if and only

if it has a Herbrand model.

Proof: If the formula has a Herbrand model then it is satisfiable.

For the other direction let A = (UA, IA) be an arbitrary model of F .

We define a Herbrand structure B = (UB, IB) as follows:

Universe UB = D(F )

Function symbols fB(t1, t2, . . . , tn) = f(t1, t2, . . . , tn)

Predicate symbols (t1, . . . , tn) ∈ PB iff (A(t1), . . . ,A(tn)) ∈ PA

Claim: B is also a model of F .
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Claim: B is also a model of F .

We prove a stronger assertion:

For every closed form G in Skolem form such that G∗ only

contains atomic formulas of F ∗: if A |= G then B |= G

Proof: By induction on the number n of universal quantifiers of G.

Basis (n = 0). Then G has no quantifiers at all.

It follows A(G) = B(G), and we are done.
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Step (n > 0). Then G = ∀x H.

A |= G

⇔ for every u ∈ UA: A[x/u](H) = 1

⇒ for every u ∈ UA of the form u = tA

where t ∈ D(G): A[x/u](H) = 1 (Skolem!)

⇔ for every t ∈ D(G): A[x/tA](H) = 1

⇔ for every t ∈ D(G): A(H[x/t]) = 1 (conversion lemma)

⇒ for every t ∈ D(G): B(H[x/t]) = 1 (induction hypothesis)

⇔ for every t ∈ D(G): B[x/tB](H) = 1 (conversion lemma)

⇔ for every t ∈ D(G): B[x/t](H) = 1 (B is Herbrand structure)

⇔ B(∀x H) = 1 (UB = D(G))

⇔ B |= G
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Löwenheim-Skolem’s Theorem

Theorem: Every satisfiable formula of predicate logic has a model

with a countable universe.

Proof: Let F be a formula, and let G be a sat-equivalent formula in

Skolem form. Then for every set X:

F has a model with universe X

iff

G has a model with universe X.
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F satisfiable ⇒ G satisfiable

⇒ G has a Herbrand model (X, I1)

⇒ F has a model (X, I2)

⇒ F has a countable model

(Herbrand universes are countable)
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Herbrand expansion

Let F = ∀y1∀y2 . . .∀ynF
∗ be a closed formula in Skolem form. The

Herbrand expansion of F is the set of atomic formulas

E(F ) = {F ∗[y1/t1][y2/t2] . . . [yn/tn] | t1, t2, . . . , tn ∈ D(F )}

Informally: the formulas of E(F ) are the result of substituting the

variables of F ∗ by the terms of D(F ) in every possible way.

8



Gödel-Herbrand-Skolem’s Theorem

Theorem: A closed formula F in Skolem form is satisfiable if and only

if its Herbrand expansion E(F ) is satisfiable (in the sense of

propositional logic).

Proof: It suffices to show: if E(F ) is satisfiable, then F has a

Herbrand model.

Let F be of the form ∀y1∀y2 . . .∀ynF
∗. We have:
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A is a Herbrand model of F

iff for every t1, t2, . . . , tn ∈ D(F ):

A[y1/t1][y2/t2]...[yn/tn](F
∗) = 1

iff for every t1, t2, . . . , tn ∈ D(F ):

A(F ∗[y1/t1][y2/t2] . . . [yn/tn]) = 1

iff for every G ∈ E(F ) we have A(G) = 1

iff A is a model of E(F )
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Herbrand’s Theorem

Theorem: A closed formula F in Skolem form is unsatisfiable if and

only if some finite subset of the Herbrand expansion of E(F ) is

unsatisfiable.

Proof: Follows immediately from the Gödel-Herbrand-Skolem’s

Theorem and the Compactness Theorem.
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Gilmore’s Algorithm

Let F be closed formula in Skolem form and let {F1, F2, F3, . . . , } be

an enumeration of E(F ).

Input: F

n := 0;

repeat n := n+ 1;

until (F1∧F2∧ . . .∧Fn) is unsatisfiable;

report “unsatisfiable” and halt.
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Semi-decidiability Theorems

Theorem:

(a) The unsatisfiability problem of predicate logic is semi-decidable.

(b) The validity problem of predicate logic is semi-decidable.

(c) The consequence problem of predicate logic is semi-decidable.

(d) The equivalence problem of predicate logic is semi-decidable.

Proof: (a) Gilmore’s algorithm is a semi-decision algorithm.

(b) F valid iff ¬F unsatisfiable.

(c) F |= G iff F → G valid.

(d) F ≡ G iff F ↔ G valid.
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