The Compactness Theorem

Theorem: A set \mathbf{S} of formulas is satisfiable iff every finite subset of \mathbf{S} is satisfiable.

Equivalent formulation: A set \mathbf{S} of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

Proof I

\Rightarrow : If S is satisfiable then every finite subset of M is satisfiable.
Trivial.
\Leftarrow : If every finite subset of \mathbf{S} is satisfiable then \mathbf{S} is satisfiable.
We prove that \mathbf{S} has a model.
For every $n \geq 1$ let $\mathbf{S}_{\mathbf{n}}$ be the subset of formulas of \mathbf{S} containing only the atomic formulas A_{1}, \ldots, A_{n}.
(More precisely: not containing any occurrence of A_{n+1}, A_{n+2}, \ldots..)
Observe: We have $\mathbf{S}_{\mathbf{1}} \subseteq \mathbf{S}_{\mathbf{2}} \subseteq \mathbf{S}_{\mathbf{3}} \ldots$

Proof II

Claim 1: Each of the sets $\mathbf{S}_{\mathbf{n}}$ has a model \mathcal{A}_{n}.

Proof: Partition $\mathbf{S}_{\mathbf{n}}$ into equivalence classes containing equivalent formulas. There are at most $2^{2^{n}}$ classes (why?). Pick a representative from each class. The set of all representatives is finite, and so by hypothesis it has a model \mathcal{A}_{n}, which is also a model of $\mathbf{S}_{\mathbf{n}}$.

Claim 2: \mathcal{A}_{n} is model not only of \mathbf{S}_{n}, but also of $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}-\mathbf{1}}$. Proof: follows immediately from $\mathbf{S}_{\mathbf{1}} \subseteq \mathbf{S}_{\mathbf{2}} \subseteq \mathbf{S}_{\mathbf{3}} \ldots$.

Proof III

Claim 3: Every assignment \mathcal{A} satisfying the following property is a model of \mathbf{S} :

For every $i \geq 1$ there is $j \geq i$ so that the restriction of \mathcal{A} to A_{1}, \ldots, A_{i} and the restriction of \mathcal{A}_{j} to A_{1}, \ldots, A_{i} coincide.

Proof: Since $j \geq i$ and \mathcal{A}_{j} is model of $\mathbf{S}_{\mathbf{j}}$, it is also model of $\mathbf{S}_{\mathbf{i}}$. Since \mathcal{A} and \mathcal{A}_{j} coincide on $A_{1}, \ldots, A_{i}, \mathcal{A}$ is also model of $\mathrm{S}_{\mathbf{i}}$. Thus, \mathcal{A} is a model of each S_{i} and hence of \mathbf{S}.

Proof IV

Claim 4: There is a truth assignment \mathcal{A} satisfying the condition of Claim 3.

Proof: We define \mathcal{A} by means of an iterative procedure whose n-th iteration fixes $\mathcal{A}\left(A_{n}\right)$.

We maintain a set of indices I, initially $I:=\mathbb{N}$.
At the n-th step, if there are infinitely many indices $i \in I$ such that $\mathcal{A}_{i}\left(A_{n}\right)=1$, then

- set $\mathcal{A}\left(A_{n}\right):=1$, and
- remove from I all indices i such that $\mathcal{A}_{i}\left(A_{n}\right)=0$; and otherwise
- set $\mathcal{A}\left(A_{n}\right):=0$, and
- remove from I all indices i such that $\mathcal{A}_{i}\left(A_{n}\right)=1$.

