The Compactness Theorem

Theorem: A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Equivalent formulation: A set S of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

Proof I

 \Rightarrow : If S is satisfiable then every finite subset of M is satisfiable.

Trivial.

 \Leftarrow : If every finite subset of S is satisfiable then S is satisfiable.

We prove that S has a model.

For every $n \ge 1$ let S_n be the subset of formulas of S containing only the atomic formulas A_1, \ldots, A_n .

(More precisely: not containing any occurrence of A_{n+1}, A_{n+2}, \ldots)

Observe: We have $S_1 \subseteq S_2 \subseteq S_3 \dots$

Proof II

Claim 1: Each of the sets S_n has a model A_n .

Proof: Partition S_n into equivalence classes containing equivalent formulas. There are at most 2^{2^n} classes (why?). Pick a representative from each class. The set of all representatives is finite, and so by hypothesis it has a model A_n , which is also a model of S_n .

Claim 2: A_n is model not only of S_n , but also of S_1, \ldots, S_{n-1} .

Proof: follows immediately from $S_1 \subseteq S_2 \subseteq S_3 \dots$

Proof III

Claim 3: Every assignment A satisfying the following property is a model of S:

For every $i \geq 1$ there is $j \geq i$ so that the restriction of \mathcal{A} to A_1, \ldots, A_i and the restriction of \mathcal{A}_j to A_1, \ldots, A_i coincide.

Proof: Since $j \geq i$ and \mathcal{A}_j is model of $\mathbf{S_j}$, it is also model of $\mathbf{S_i}$. Since \mathcal{A} and \mathcal{A}_j coincide on A_1, \ldots, A_i , \mathcal{A} is also model of $\mathbf{S_i}$. Thus, \mathcal{A} is a model of each $\mathbf{S_i}$ and hence of \mathbf{S} .

Proof IV

Claim 4: There is a truth assignment A satisfying the condition of Claim 3.

Proof: We define A by means of an iterative procedure whose n-th iteration fixes $A(A_n)$.

We maintain a set of indices I, initially $I := \mathbb{N}$.

At the n-th step, if there are infinitely many indices $i \in I$ such that $\mathcal{A}_i(A_n) = 1$, then

- set $\mathcal{A}(A_n) := 1$, and
- remove from I all indices i such that $\mathcal{A}_i(A_n) = 0$;

and otherwise

- set $\mathcal{A}(A_n) := 0$, and
- remove from I all indices i such that $\mathcal{A}_i(A_n) = 1$.