Modal logic and the characterization theorem

Overview of this section:

- Predicate logic has an undecidable satisfiability problem and a model checking problem of high complexity (PSPACE), hence not perfectly suited for verification of systems.
- We introduce modal logic, a fragment of predicate logic whose models are Kripke structures (essentially vertex-labeled directed graphs).
- We show: modal logic has a decidable satisfiability problem and a polynomial time decidable model checking problem.
- Temporal logics used in verification (like modal logic, LTL, CTL, μ-calculus) typically do not distinguish structures that are bisimulation equivalent.
- We show bisimulation-invariant predicate logic coincides with modal logic!

Syntax of modal logic

We fix a countable set \mathbb{P} of unary relational symbols.

The set ML of formulas of modal logic is the smallest set that satisfies the following:

- $\bullet \ p \in \mathsf{ML} \text{ for each } p \in \mathbb{P}\text{,}$
- if $\varphi \in \mathsf{ML}$ then $\neg \varphi \in \mathsf{ML}$,
- if $\varphi_1, \varphi_2 \in \mathsf{ML}$ then $(\varphi_1 \lor \varphi_2) \in \mathsf{ML}$,
- if $\varphi_1, \varphi_2 \in \mathsf{ML}$ then $(\varphi_1 \land \varphi_2) \in \mathsf{ML}$,
- if $\varphi \in \mathsf{ML}$ then $\Diamond \varphi \in \mathsf{ML}$, and
- if $\varphi \in ML$ then $\Box \varphi \in ML$.

Example.

$$((p_1 \wedge p_2) \vee \neg \Box (p_3 \vee \Diamond \Diamond (p_2 \wedge \neg p_4))) \in \mathsf{ML}$$

Semantics of modal logic

A Kripke structure is a logical structure \mathcal{A} over some signature $S = \mathsf{P} \cup \{E\}$, where $\mathsf{P} \subseteq \mathbb{P}$ is finite and where E is a binary relational symbol.

For each formula $\varphi \in ML$ and each suitable Kripke structure \mathcal{A} and each $a \in U_{\mathcal{A}}$ we define $(\mathcal{A}, a) \models \varphi$ inductively as follows:

- $(\mathcal{A}, a) \models p$ if and only if $a \in p^{\mathcal{A}}$,
- $(\mathcal{A}, a) \models \neg \varphi$ if and only if $(\mathcal{A}, a) \not\models \varphi$,
- $(\mathcal{A}, a) \models \varphi_1 \lor \varphi_2$ if and only if $(\mathcal{A}, a) \models \varphi_1$ or $(\mathcal{A}, a) \models \varphi_2$,
- $(\mathcal{A}, a) \models \varphi_1 \land \varphi_2$ if and only if $(\mathcal{A}, a) \models \varphi_1$ and $(\mathcal{A}, a) \models \varphi_2$,
- $(\mathcal{A}, a) \models \Diamond \varphi$ if and only if $(\mathcal{A}, b) \models \varphi$ for some $b \in U_{\mathcal{A}}$ with $(a, b) \in E^{\mathcal{A}}$, and
- $(\mathcal{A}, a) \models \Box \varphi$ if and only if $(\mathcal{A}, b) \models \varphi$ for all $b \in U_{\mathcal{A}}$ with $(a, b) \in E^{\mathcal{A}}$.

The size and subformulas of a formula

The size $|\varphi|$ of a formula φ is defined as follows:

- |p| = 1 if for each $p \in \mathbb{P}$,
- $|\neg \varphi| = |\varphi| + 1$,
- $|\varphi_1 \vee \varphi_2 = |\varphi_1 \wedge \varphi_2| = |\varphi_1| + |\varphi_2| + 1$, and
- $|\Diamond \varphi| = |\Box \varphi| = |\varphi| + 1.$

The set of subformulas subf(φ) of a formula φ is defined as follows:

- $\mathrm{subf}(p) = \{p\}$ for each $p \in \mathbb{P}$,
- $\bullet \ \operatorname{subf}(\neg \varphi) = \{\neg \varphi\} \cup \operatorname{subf}(\varphi),$
- $\operatorname{subf}(\varphi_1 \circ \varphi_2) = \{\varphi_1 \circ \varphi_2\} \cup \operatorname{subf}(\varphi_1) \cup \operatorname{subf}(\varphi_2) \text{ for each } o \in \{\lor, \land\}, \text{ and }$
- $\operatorname{subf}(\circ\varphi) = \{\circ\varphi\} \cup \operatorname{subf}(\varphi) \text{ for each } \circ \in \{\diamondsuit, \Box\}.$

Note that $|\operatorname{subf}(\varphi)| = |\varphi|$.

Theorem. The following problem is decidable in polynomial time: INPUT: An ML formula φ , a suitable Kripke structure \mathcal{A} and some $a \in U_{\mathcal{A}}$. QUESTION: $(\mathcal{A}, a) \models \varphi$?

Proof (Idea only, details not difficult): For each subformula ψ of φ compute the set of $b \in U_A$ such that $(A, b) \models \psi$.

Satisfiability checking of modal logic

As expected we say that an ML formula φ is satisfiable if there exists a suitable Kripke structure \mathcal{A} and some $a \in U_{\mathcal{A}}$ such that $(\mathcal{A}, a) \models \varphi$.

Theorem. (Small model property of modal logic) Assume $\varphi \in ML$ is satisfiable. Then there exists a suitable Kripke structure \mathcal{A} and some $a \in U_{\mathcal{A}}$ such that

- $\bullet \ (\mathcal{A},a) \models \varphi \text{ and }$
- $|U_{\mathcal{A}}| \le 2^{|\varphi|}$.

Corollary. Satisfiability of ML is decidable.

From modal logic to predicate logic

Lemma. For each formula φ there exists a formula $\overline{\varphi}(x)$ of predicate logic such that for each suitable Kripke structure \mathcal{A} and each $a \in U_{\mathcal{A}}$ we have

$$(\mathcal{A}, a) \models \varphi \qquad \Leftrightarrow \quad \mathcal{A}_{[x/a]} \models \overline{\varphi}.$$

Proof.

We define the translation $\widetilde{\varphi}$ inductively as follows:

•
$$\widetilde{p}(x) = p(x)$$
 for each $p \in \mathbb{P}$,

- $\widetilde{\neg \varphi}(x) = \neg \widetilde{\varphi}(x)$,
- $\widetilde{\varphi_1 \circ \varphi_2}(x) = \widetilde{\varphi_1}(x) \circ \widetilde{\varphi_2}(x)$ for each $\circ \in \{\lor, \land\}$,
- $\widetilde{\diamond \varphi}(x) = \exists y (E(x,y) \wedge \widetilde{\varphi}(y))$, and
- $\widetilde{\Box \varphi}(x) = \forall y(E(x,y) \to \widetilde{\varphi}(y)).$

Note that $\widetilde{\varphi}$ requires at most two free variables.

Predicate logic vs. modal logic

Question. Is every property expressible in predicate logic over Kripke structures expressible in modal logic?

Answer. No! Take $\varphi(x) = \exists y E(x, y) \land E(y, x)$ expressing that there exists a cycle of length two (proof later).

We will concern ourselves with the following questions for the rest of this section:

- How to prove that the above property is not expressible in modal logic?
- How must we restrict the properties expressible in predicate logic to obtain the properties expressible in modal logic?

Bisimulation equivalence

Let \mathcal{A} and \mathcal{B} be two Kripke structures suitable for some finite signature S. A bisimulation between \mathcal{A} and \mathcal{B} is a relation $R \subseteq U_{\mathcal{A}} \times U_{\mathcal{B}}$ such that for each $(a, b) \in R$ the following holds:

- $a \in p^{\mathcal{A}}$ if and only if $b \in p^{\mathcal{B}}$ for each $p \in \mathbb{P}$,
- for each $(a, a') \in E^{\mathcal{A}}$ there exists some $(b, b') \in E^{\mathcal{B}}$ such that $(a', b') \in R$, and
- for each $(b, b') \in E^{\mathcal{B}}$ there exists some $(a, a') \in E^{\mathcal{A}}$ such that $(a', b') \in R$.

Given $a \in U_{\mathcal{A}}$ and $b \in U_{\mathcal{B}}$ we say (\mathcal{A}, a) and (\mathcal{B}, b) are bisimilar (we write $(\mathcal{A}, a) \sim (\mathcal{B}, b)$ for short) if $(a, b) \in R$ for some bisimulation R between \mathcal{A} and \mathcal{B} .

Bisimulation as a game

Consider the following bisimulation game from $\langle (A_1, a_1), (A_2, a_2) \rangle$ (on signature S) played between Attacker and Defender:

- Attacker chooses some $i \in \{1, 2\}$ and some $(a_i, a'_i) \in E^{\mathcal{A}_i}$.
- Defender answers with some $(a_{3-i}, a'_{3-i}) \in E^{\mathcal{A}_{3-i}}$.
- The game continues in $\langle (\mathcal{A}_1, a'_1), (\mathcal{A}_2, a'_2) \rangle$.

Who wins a play?

- If along the play there is some pair $\langle (\mathcal{A}_1, x_1), (\mathcal{A}_2, x_2) \rangle$ and a $p \in S$ such that $x_1 \in p^{\mathcal{A}_1} \not\Leftrightarrow x_2 \in p^{\mathcal{A}_2}$, then Attacker wins!
- If the play ends such that Defender cannot answer Attacker's move (no successor), then Attacker wins.
- If the play ends $\langle (A_1, x_1), (A_2, x_2) \rangle$, where x_1, x_2 are both dead ends, then Defender wins.
- Defender wins each infinite play.

Finite approximants

For each $\ell \ge 0$ we define the finite approximant \sim_{ℓ} between \mathcal{A} and \mathcal{B} (over signature S) as follows:

$$\sim_{0} = \{(a,b) \in U_{\mathcal{A}} \times U_{\mathcal{B}} \mid \forall p \in S \cap \mathbb{P} : a \in p^{\mathcal{A}} \Leftrightarrow b \in p^{\mathcal{B}}\},\$$
$$\sim_{\ell+1} = \{a \sim_{\ell} b \mid \forall (a,a') \in E^{\mathcal{A}} \exists (b,b') \in E^{\mathcal{B}} : a' \sim_{\ell} b' \land$$
$$\forall (b,b') \in E^{\mathcal{B}} \exists (a,a') \in E^{\mathcal{A}} : a' \sim_{\ell} b'\}$$

One easily sees that \sim_{ℓ} is an equivalence relation for each $\ell \in \mathbb{N}$.

Moreover $\sim \subseteq \sim_{\ell}$ for each $\ell \in \mathbb{N}$.

Theorem. Defender has a winning strategy from $\langle (\mathcal{A}, a), (\mathcal{B}, b) \rangle$ if and only if $(\mathcal{A}, a) \sim (\mathcal{B}, b)$.

Theorem. Defender has a winning strategy from $\langle (\mathcal{A}, a), (\mathcal{B}, b) \rangle$ in the ℓ round game if and only if $(\mathcal{A}, a) \sim_{\ell} (\mathcal{B}, b)$.

Fact. Bisimulation is insensitive to disjoint sums: We have $(\mathcal{A}, a) \sim (\mathcal{B}, b)$ if and only if $(\mathcal{A} + \mathcal{C}, a) \sim (\mathcal{B}, b)$, where $\mathcal{A} + \mathcal{C}$ denotes the disjoint sum of \mathcal{A} and \mathcal{C} .

\sim_ℓ and ML_ℓ

For each $\varphi \in ML$, let us define the modal depth $md(\varphi)$ as follows:

- $\operatorname{md}(p) = 0$ for each $p \in \mathbb{P}$,
- $\bullet \ \ \mathsf{md}(\neg\varphi)=\mathsf{md}(\varphi),$
- $\mathsf{md}(\varphi_1 \lor \varphi_2) = \mathsf{md}(\varphi_1 \land \varphi_2) = \max\{\mathsf{md}(\varphi_1), \mathsf{md}(\varphi_2)\}, \text{ and }$
- $\operatorname{md}(\Diamond \varphi) = \operatorname{md}(\Box \varphi) = \operatorname{md}(\varphi) + 1.$

For each $\ell \geq 0$ define $\mathsf{ML}_{\ell} = \{\varphi \in \mathsf{ML} \mid \mathsf{md}(\varphi) = k\}.$

Lemma. Let $\ell \in \mathbb{N}$. Let \mathcal{A} and \mathcal{B} be Kripke structures over a finite signature S and let $a \in U_{\mathcal{A}}$ and $b \in U_{\mathcal{B}}$. Then we have:

- (1) \sim_{ℓ} has finitely many equivalence classes.
- (2) $(\mathcal{A}, a) \sim_{\ell} (\mathcal{B}, b)$ iff $(\mathcal{A}, a) \models \varphi \Leftrightarrow (\mathcal{B}, b) \models \varphi$ for all $\varphi \in \mathsf{ML}_{\ell}$.
- (3) Each equivalence class of \sim_{ℓ} is definable by some ML_{ℓ} formula.

Trees

A Kripke structure \mathcal{A} is a tree (structure) if $(U_{\mathcal{A}}, E^{\mathcal{A}})$ is a directed tree, i.e. \mathcal{A} is acyclic, the symmetric closure of $E^{\mathcal{A}}$ is connected and each node has at most one incoming edge.

A tree \mathcal{A} has depth ℓ if each path in \mathcal{A} has length at most ℓ .

For $\ell \geq 0$ we say (\mathcal{A}, a) is ℓ -locally a tree structure if $\mathcal{A} \upharpoonright N_{\ell}(a)$ is a tree structure.

Lemma.

(1) $(\mathcal{A}, a) \sim_{\ell} (\mathcal{B}, b)$ iff $(\mathcal{A} \upharpoonright N_{\ell}(a), a) \sim_{\ell} (\mathcal{B} \upharpoonright N_{\ell}(b), b)$. (2) If \mathcal{A} and \mathcal{B} are trees of depth ℓ , then

$$(\mathcal{A}, a) \sim_{\ell} (\mathcal{B}, b) \text{ iff } (\mathcal{A}, a) \sim (\mathcal{B}, b).$$

Unravellings

The unravelling of \mathcal{A} at some $a \in U_{\mathcal{A}}$ is the tree \mathcal{A}_a^* , where

- $U_{\mathcal{A}_a^*} = \{ \pi \mid \pi \text{ is a finite path in } \mathcal{A} \text{ starting at } a \}.$
- $E^{\mathcal{A}_a^*} = \{ (\pi, \pi') \in (U_{\mathcal{A}_a^*})^2 \mid \exists (u, v) \in E^{\mathcal{A}} : \pi' = \pi(x, y) \}.$

Lemma. Let \mathcal{A} be a Kripke structure and let $a \in U_{\mathcal{A}}$. Then we have

- $(\mathcal{A}_a^*, a) \sim (\mathcal{A}, a).$
- $(\mathcal{A}_a^* \upharpoonright N_\ell(a), a) \sim_\ell (\mathcal{A}, a).$

A predicate logic formula F(x) over a Kripke signature is bisimulation invariant if the following holds for all suitable $(\mathcal{A}, a), (\mathcal{B}, b)$:

$$(\mathcal{A}, a) \sim (\mathcal{B}, b) \Longrightarrow \left(\mathcal{A}_{[x/a]} \models F \Leftrightarrow (\mathcal{B}_{[x/b]} \models F\right)$$

A predicate logic formula F(x) over a Kripke signature is ℓ -local if for all suitable (\mathcal{A}, a) we have

$$\mathcal{A}_{[x/a]} \models F \iff \mathcal{A} \upharpoonright N_{\ell}(a)_{[x/a]} \models F$$

The Characterization Theorem

Theorem (van Benthem/Rosen, proof by Otto). The following are equivalent for any predicate logic formula F(x) over a Kripke signature with qr(F) = q:

- F(x) is bisimulation-invariant.
- F(x) is logically equivalent to some ML_{ℓ} formula, where $\ell = 2^q 1$.

The same holds when restricted to the class of finite Kripke structures.

We prove the Characterization Theorem in three steps:

- (1) Any bisimulation invariant F(x) of predicate logic is ℓ -local for $\ell = 2^q 1$, where q = qr(F).
- (2) Any bisimulation invariant F(x) that is ℓ -local is even invariant under ℓ -bisimulation equivalence \sim_{ℓ} .
- (3) Any property invariant under ℓ -bisimulation equivalence is definable in ML_{ℓ} .