Modal logic and the characterization theorem

Overview of this section:

Predicate logic has an undecidable satisfiability problem and a
model checking problem of high complexity (PSPACE), hence
not perfectly suited for verification of systems.

We introduce modal logic, a fragment of predicate logic whose
models are Kripke structures (essentially vertex-labeled directed

graphs).
We show: modal logic has a decidable satisfiability problem and
a polynomial time decidable model checking problem.

Temporal logics used in verification (like modal logic, LTL, CTL,
p-calculus) typically do not distinguish structures that are
bisimulation equivalent.

We show bisimulation-invariant predicate logic coincides with
modal logic!



Syntax of modal logic

We fix a countable set P of unary relational symbols.

The set ML of formulas of modal logic is the smallest set that
satisfies the following:

e p & ML for each p € P,

e if o € ML then —p € ML,

o if 1,2 € ML then (1 V ) € ML,

o if 1,2 € ML then (1 A pg) € ML,

o if o € ML then O € ML, and

o if o € ML then Oy € ML.

Example.

((pr A p2) V=0(ps VOO(p2 A —py))) € ML



Semantics of modal logic

A Kripke structure is a logical structure A over some signature
S =PU{FE}, where P C P is finite and where FE is a binary
relational symbol.

For each formula o € ML and each suitable Kripke structure A and
each a € U4 we define (A, a) = ¢ inductively as follows:

e (A a) = pifandonlyifacp?

e (A a) =—pif and only if (A, a) |~ ¢,

o (A a)=w1Vpsifandonlyif (A a) = ¢ or (A a) = v,

o (A,a) E i ANpgifandonlyif (A a) = @1 and (A, a) = s,
A, a) = <y if and only if (A, b) = ¢ for some b € U4 with



The size and subformulas of a formula

The size || of a formula ¢ is defined as follows:

e |p| =1 if for each p € P,

o || =lpl+1,

o |1V iy =|p1 Apa| = |p1]| + |p2] + 1, and
o [Op] = [0p] =] +1.

The set of subformulas subf(y) of a formula ¢ is defined as follows:
e subf(p) = {p} for each p € P,
o subf(—yp) = {=¢} Usubf(p),

o subf(yy o pa) = {1 0y} Usubf(yy) Usubf(p,) for each
o€ {V,A}, and

e subf(op) = {op} Usubf(y) for each o € {<, O},
Note that |[subf(y)| = |¢|.



Model checking of modal logic

Theorem. The following problem is decidable in polynomial time:

INPUT: An ML formula ¢, a suitable Kripke structure A and some
a € Uy.

QUESTION: (A, a) = ?

Proof (ldea only, details not difficult): For each subformula ) of ¢
compute the set of b € Uy such that (A, 0) = 1.



Satisfiability checking of modal logic

As expected we say that an ML formula ¢ is satisfiable if there exists
a suitable Kripke structure A and some a € U4 such that (A,a) = ¢.

Theorem. (Small model property of modal logic) Assume € ML is
satisfiable. Then there exists a suitable Kripke structure A and some
a € Uy such that

o (A a) =y and
o Uyl < el

Corollary. Satisfiability of ML is decidable.



From modal logic to predicate logic

Lemma. For each formula ¢ there exists a formula @(x) of predicate
logic such that for each suitable Kripke structure A and each a € Uy
we have

(A7 a) ‘: ¥ <~ A[az/a] ‘: @

Proof.
We define the translation ¢ inductively as follows:

~

p(x) = p(x) for each p € P,

~p(x) = —p(z),

1 0 o) = p1(x) 0 Pa(x) for each o € {V, A},
Op(z) = Fy(E(z, y) A ¢(y)), and

Op(z) = Vy(E(r,y) — o(y)).

Note that ¢ requires at most two free variables.



Predicate logic vs. modal logic

Question. Is every property expressible in predicate logic over Kripke
structures expressible in modal logic?

Answer. No! Take ¢(x) = JyFE(z,y) A E(y, x) expressing that there
exists a cycle of length two (proof later).

We will concern ourselves with the following questions for the rest of
this section:

e How to prove that the above property is not expressible in
modal logic?

e How must we restrict the properties expressible in predicate
logic to obtain the properties expressible in modal logic?



Bisimulation equivalence

Let A and B be two Kripke structures suitable for some finite
signature S. A bisimulation between A and B is a relation
R C U4 x Ug such that for each (a,b) € R the following holds:

e a € p?ifandonlyifbéep? for each p € P,

e for each (a,a’) € EA there exists some (b,b') € E® such that
(a',b') € R, and
o for each (b, V') € EP there exists some (a,a’) € E* such that
(a',b') € R.
Given a € Uy and b € Up we say (A, a) and (B, b) are bisimilar (we
write (A, a) ~ (B,b) for short) if (a,b) € R for some bisimulation R
between A and B.



Bisimulation as a game

Consider the following bisimulation game from ((A1, a1), (As, asz))
(on signature S) played between Attacker and Defender:

e Attacker chooses some i € {1,2} and some (a;,a}) € E4.
e Defender answers with some (az_;, as_;) € B4,
e The game continues in ((A1,a}), (Az,ab)).

Who wins a play?

e If along the play there is some pair ((Ay,z1), (A2, x2)) and a
p € S such that z; € p™ & x5 € p2, then Attacker wins!

e |f the play ends such that Defender cannot answer Attacker's
move (no successor), then Attacker wins.

e If the play ends ((Ay, 1), (A2, x2)), where x1, x5 are both dead
ends, then Defender wins.

e Defender wins each infinite play.
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Finite approximants

For each ¢ > 0 we define the finite approximant ~, between A and B
(over signature S) as follows:

~o={(a,b) eUax Ug |Vp e SNP:acpt o bepbl,
~opi={a ~p b | Y(a,d) € EAI(b,V) € EP :d ~p b A
V(b)) € EF3(a,d') € B4 :d' ~, V')

One easily sees that ~y is an equivalence relation for each ¢ € N.

Moreover ~C~, for each ¢/ € N.
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Bisimulation as a game

Theorem. Defender has a winning strategy from ((A, a), (B,b)) if and
only if (A,a) ~ (B,b).

Theorem. Defender has a winning strategy from ((A, a), (B, b)) in the
¢ round game if and only if (A, a) ~, (B,b).

Fact. Bisimulation is insensitive to disjoint sums: We have
(A,a) ~ (B,b) if and only if (A+C,a)~ (B,b), where A+ C
denotes the disjoint sum of A and C.
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~, and ML,

For each ¢ € ML, let us define the modal depth md(y) as follows:

md(p) = 0 for each p € P,

md(—p) = md(yp),

md(1 V 2) = md(p1 A p2) = max{md(¢1), md(¢2)}, and
md(<Cp) = md(Op) = md(p) + 1.

For each ¢ > 0 define ML, ={p € ML | md(y) = k}.

Lemma. Let ¢/ € N. Let A and B be Kripke structures over a finite
signature S and let a € U4 and b € Ug. Then we have:

(1) ~y has finitely many equivalence classes.

(2)
(3)

(A, a) ~p (B,b) iff (A,a) E p < (B,b) = ¢ for all ¢ € ML,.

Each equivalence class of ~; is definable by some ML, formula.
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Trees

A Kripke structure A is a tree (structure) if (Uy, £*) is a directed
tree, i.e. A is acyclic, the symmetric closure of EA is connected and
each node has at most one incoming edge.

A tree A has depth ¢ if each path in A has length at most /.

For £ > 0 we say (A, a) is (-locally a tree structure if A [ Ny(a) is a
tree structure.

Lemma.
(1) (A, a) ~¢ (B,b) iff (AT Ne(a),a) ~y (B[ Ng(b),b).
(2) If A and B are trees of depth ¢, then

(A, a) ~p (B,b) iff (A,a) ~ (B,b).
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Unravellings

The unravelling of A at some a € U4 is the tree A, where
o Uy = {m | mis a finite path in A starting at a}.
o B4 = {(m 7)€ (UA3)2 | J(u,v) € BA 7' = m(z,y)}.

Lemma. Let A be a Kripke structure and let a € U 4. Then we have
i (.AZ,CL) ~ (A7 a)'
o (A7 I Ne(a),a) ~¢ (A, a)
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Bisimulation invariance and locality

A predicate logic formula F'(z) over a Kripke signature is bisimulation
invariant if the following holds for all suitable (A, a), (B, b):

(Aa CL) ~ (Ba b) — (-A[x/a] ‘: < (B[x/b] ‘: F)

A predicate logic formula F'(z) over a Kripke signature is /-local if for
all suitable (A, a) we have

.A[m/a] ‘: F << A ng(a)[m/a] ‘: F
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The Characterization Theorem

Theorem (van Benthem/Rosen, proof by Otto). The following are
equivalent for any predicate logic formula F'(x) over a Kripke
signature with qr(F') = ¢:

e F'(x) is bisimulation-invariant.

e F(x) is logically equivalent to some ML, formula, where
¢ =29—1.

The same holds when restricted to the class of finite Kripke
structures.

17



Proof Outline of Characterization Theorem

We prove the Characterization Theorem in three steps:

(1) Any bisimulation invariant F'(x) of predicate logic is ¢-local for
¢ =27—1, where g = qr(F).

(2) Any bisimulation invariant F'(x) that is /-local is even invariant
under /-bisimulation equivalence ~j.

(3) Any property invariant under ¢-bisimulation equivalence is
definable in ML,.
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