
Modal logic and the characterization theorem

Overview of this section:

• Predicate logic has an undecidable satisfiability problem and a

model checking problem of high complexity (PSPACE), hence

not perfectly suited for verification of systems.

• We introduce modal logic, a fragment of predicate logic whose

models are Kripke structures (essentially vertex-labeled directed

graphs).

• We show: modal logic has a decidable satisfiability problem and

a polynomial time decidable model checking problem.

• Temporal logics used in verification (like modal logic, LTL, CTL,

µ-calculus) typically do not distinguish structures that are

bisimulation equivalent.

• We show bisimulation-invariant predicate logic coincides with

modal logic!
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Syntax of modal logic

We fix a countable set P of unary relational symbols.

The set ML of formulas of modal logic is the smallest set that

satisfies the following:

• p ∈ ML for each p ∈ P,

• if ϕ ∈ ML then ¬ϕ ∈ ML,

• if ϕ1, ϕ2 ∈ ML then (ϕ1 ∨ ϕ2) ∈ ML,

• if ϕ1, ϕ2 ∈ ML then (ϕ1 ∧ ϕ2) ∈ ML,

• if ϕ ∈ ML then ✸ϕ ∈ ML, and

• if ϕ ∈ ML then ✷ϕ ∈ ML.

Example.

((p1 ∧ p2) ∨ ¬✷(p3 ∨✸✸(p2 ∧ ¬p4))) ∈ ML
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Semantics of modal logic

A Kripke structure is a logical structure A over some signature

S = P ∪ {E}, where P ⊆ P is finite and where E is a binary

relational symbol.

For each formula ϕ ∈ ML and each suitable Kripke structure A and

each a ∈ UA we define (A, a) |= ϕ inductively as follows:

• (A, a) |= p if and only if a ∈ pA,

• (A, a) |= ¬ϕ if and only if (A, a) 6|= ϕ,

• (A, a) |= ϕ1 ∨ ϕ2 if and only if (A, a) |= ϕ1 or (A, a) |= ϕ2,

• (A, a) |= ϕ1 ∧ ϕ2 if and only if (A, a) |= ϕ1 and (A, a) |= ϕ2,

• (A, a) |= ✸ϕ if and only if (A, b) |= ϕ for some b ∈ UA with

(a, b) ∈ EA, and

• (A, a) |= ✷ϕ if and only if (A, b) |= ϕ for all b ∈ UA with

(a, b) ∈ EA.

3



The size and subformulas of a formula

The size |ϕ| of a formula ϕ is defined as follows:

• |p| = 1 if for each p ∈ P,

• |¬ϕ| = |ϕ|+ 1,

• |ϕ1 ∨ ϕ2 = |ϕ1 ∧ ϕ2| = |ϕ1|+ |ϕ2|+ 1, and

• |✸ϕ| = |✷ϕ| = |ϕ|+ 1.

The set of subformulas subf(ϕ) of a formula ϕ is defined as follows:

• subf(p) = {p} for each p ∈ P,

• subf(¬ϕ) = {¬ϕ} ∪ subf(ϕ),

• subf(ϕ1 ◦ ϕ2) = {ϕ1 ◦ ϕ2} ∪ subf(ϕ1) ∪ subf(ϕ2) for each

◦ ∈ {∨,∧}, and

• subf(◦ϕ) = {◦ϕ} ∪ subf(ϕ) for each ◦ ∈ {✸,✷}.

Note that |subf(ϕ)| = |ϕ|.
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Model checking of modal logic

Theorem. The following problem is decidable in polynomial time:

INPUT: An ML formula ϕ, a suitable Kripke structure A and some

a ∈ UA.

QUESTION: (A, a) |= ϕ?

Proof (Idea only, details not difficult): For each subformula ψ of ϕ

compute the set of b ∈ UA such that (A, b) |= ψ.
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Satisfiability checking of modal logic

As expected we say that an ML formula ϕ is satisfiable if there exists

a suitable Kripke structure A and some a ∈ UA such that (A, a) |= ϕ.

Theorem. (Small model property of modal logic) Assume ϕ ∈ ML is

satisfiable. Then there exists a suitable Kripke structure A and some

a ∈ UA such that

• (A, a) |= ϕ and

• |UA| ≤ 2|ϕ|.

Corollary. Satisfiability of ML is decidable.
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From modal logic to predicate logic

Lemma. For each formula ϕ there exists a formula ϕ(x) of predicate

logic such that for each suitable Kripke structure A and each a ∈ UA

we have

(A, a) |= ϕ ⇔ A[x/a] |= ϕ.

Proof.

We define the translation ϕ̃ inductively as follows:

• p̃(x) = p(x) for each p ∈ P,

• ¬̃ϕ(x) = ¬ϕ̃(x),

• ϕ̃1 ◦ ϕ2(x) = ϕ̃1(x) ◦ ϕ̃2(x) for each ◦ ∈ {∨,∧},

• ✸̃ϕ(x) = ∃y(E(x, y) ∧ ϕ̃(y)), and

• ✷̃ϕ(x) = ∀y(E(x, y) → ϕ̃(y)).

Note that ϕ̃ requires at most two free variables.
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Predicate logic vs. modal logic

Question. Is every property expressible in predicate logic over Kripke

structures expressible in modal logic?

Answer. No! Take ϕ(x) = ∃yE(x, y) ∧ E(y, x) expressing that there

exists a cycle of length two (proof later).

We will concern ourselves with the following questions for the rest of

this section:

• How to prove that the above property is not expressible in

modal logic?

• How must we restrict the properties expressible in predicate

logic to obtain the properties expressible in modal logic?
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Bisimulation equivalence

Let A and B be two Kripke structures suitable for some finite

signature S. A bisimulation between A and B is a relation

R ⊆ UA × UB such that for each (a, b) ∈ R the following holds:

• a ∈ pA if and only if b ∈ pB for each p ∈ P,

• for each (a, a′) ∈ EA there exists some (b, b′) ∈ EB such that

(a′, b′) ∈ R, and

• for each (b, b′) ∈ EB there exists some (a, a′) ∈ EA such that

(a′, b′) ∈ R.

Given a ∈ UA and b ∈ UB we say (A, a) and (B, b) are bisimilar (we

write (A, a) ∼ (B, b) for short) if (a, b) ∈ R for some bisimulation R

between A and B.
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Bisimulation as a game

Consider the following bisimulation game from 〈(A1, a1), (A2, a2)〉

(on signature S) played between Attacker and Defender:

• Attacker chooses some i ∈ {1, 2} and some (ai, a
′
i) ∈ EAi.

• Defender answers with some (a3−i, a
′
3−i) ∈ EA3−i.

• The game continues in 〈(A1, a
′
1), (A2, a

′
2)〉.

Who wins a play?

• If along the play there is some pair 〈(A1, x1), (A2, x2)〉 and a

p ∈ S such that x1 ∈ pA1 6⇔ x2 ∈ pA2 , then Attacker wins!

• If the play ends such that Defender cannot answer Attacker’s

move (no successor), then Attacker wins.

• If the play ends 〈(A1, x1), (A2, x2)〉, where x1, x2 are both dead

ends, then Defender wins.

• Defender wins each infinite play.
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Finite approximants

For each ℓ ≥ 0 we define the finite approximant ∼ℓ between A and B

(over signature S) as follows:

∼0= {(a, b) ∈ UA × UB | ∀p ∈ S ∩ P : a ∈ pA ⇔ b ∈ pB},

∼ℓ+1= {a ∼ℓ b | ∀(a, a
′) ∈ EA∃(b, b′) ∈ EB : a′ ∼ℓ b

′ ∧

∀(b, b′) ∈ EB∃(a, a′) ∈ EA : a′ ∼ℓ b
′}

One easily sees that ∼ℓ is an equivalence relation for each ℓ ∈ N.

Moreover ∼⊆∼ℓ for each ℓ ∈ N.
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Bisimulation as a game

Theorem. Defender has a winning strategy from 〈(A, a), (B, b)〉 if and

only if (A, a) ∼ (B, b).

Theorem. Defender has a winning strategy from 〈(A, a), (B, b)〉 in the

ℓ round game if and only if (A, a) ∼ℓ (B, b).

Fact. Bisimulation is insensitive to disjoint sums: We have

(A, a) ∼ (B, b) if and only if (A+ C, a) ∼ (B, b), where A+ C

denotes the disjoint sum of A and C.
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∼ℓ and MLℓ

For each ϕ ∈ ML, let us define the modal depth md(ϕ) as follows:

• md(p) = 0 for each p ∈ P,

• md(¬ϕ) = md(ϕ),

• md(ϕ1 ∨ ϕ2) = md(ϕ1 ∧ ϕ2) = max{md(ϕ1),md(ϕ2)}, and

• md(✸ϕ) = md(✷ϕ) = md(ϕ) + 1.

For each ℓ ≥ 0 define MLℓ ={ϕ ∈ ML | md(ϕ) = k}.

Lemma. Let ℓ ∈ N. Let A and B be Kripke structures over a finite

signature S and let a ∈ UA and b ∈ UB. Then we have:

(1) ∼ℓ has finitely many equivalence classes.

(2) (A, a) ∼ℓ (B, b) iff (A, a) |= ϕ⇔ (B, b) |= ϕ for all ϕ ∈ MLℓ.

(3) Each equivalence class of ∼ℓ is definable by some MLℓ formula.
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Trees

A Kripke structure A is a tree (structure) if (UA, E
A) is a directed

tree, i.e. A is acyclic, the symmetric closure of EA is connected and

each node has at most one incoming edge.

A tree A has depth ℓ if each path in A has length at most ℓ.

For ℓ ≥ 0 we say (A, a) is ℓ-locally a tree structure if A ↾ Nℓ(a) is a

tree structure.

Lemma.

(1) (A, a) ∼ℓ (B, b) iff (A ↾ Nℓ(a), a) ∼ℓ (B ↾ Nℓ(b), b).

(2) If A and B are trees of depth ℓ, then

(A, a) ∼ℓ (B, b) iff (A, a) ∼ (B, b).
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Unravellings

The unravelling of A at some a ∈ UA is the tree A∗
a, where

• UA∗

a
= {π | π is a finite path in A starting at a}.

• EA∗

a = {(π, π′) ∈ (UA∗

a
)2 | ∃(u, v) ∈ EA : π′ = π(x, y)}.

Lemma. Let A be a Kripke structure and let a ∈ UA. Then we have

• (A∗
a, a) ∼ (A, a).

• (A∗
a ↾ Nℓ(a), a) ∼ℓ (A, a).
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Bisimulation invariance and locality

A predicate logic formula F (x) over a Kripke signature is bisimulation

invariant if the following holds for all suitable (A, a), (B, b):

(A, a) ∼ (B, b) =⇒
(
A[x/a] |= F ⇔ (B[x/b] |= F

)

A predicate logic formula F (x) over a Kripke signature is ℓ-local if for

all suitable (A, a) we have

A[x/a] |= F ⇐⇒ A ↾ Nℓ(a)[x/a] |= F
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The Characterization Theorem

Theorem (van Benthem/Rosen, proof by Otto). The following are

equivalent for any predicate logic formula F (x) over a Kripke

signature with qr(F ) = q:

•• F (x) is bisimulation-invariant.

• F (x) is logically equivalent to some MLℓ formula, where

ℓ = 2q − 1.

The same holds when restricted to the class of finite Kripke

structures.
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Proof Outline of Characterization Theorem

We prove the Characterization Theorem in three steps:

(1) Any bisimulation invariant F (x) of predicate logic is ℓ-local for

ℓ = 2q − 1, where q = qr(F ).

(2) Any bisimulation invariant F (x) that is ℓ-local is even invariant

under ℓ-bisimulation equivalence ∼ℓ.

(3) Any property invariant under ℓ-bisimulation equivalence is

definable in MLℓ.
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