Modal logic and the characterization theorem

Overview of this section:

- Predicate logic has an undecidable satisfiability problem and a model checking problem of high complexity (PSPACE), hence not perfectly suited for verification of systems.
- We introduce modal logic, a fragment of predicate logic whose models are Kripke structures (essentially vertex-labeled directed graphs).
- We show: modal logic has a decidable satisfiability problem and a polynomial time decidable model checking problem.
- Temporal logics used in verification (like modal logic, LTL, CTL, μ-calculus) typically do not distinguish structures that are bisimulation equivalent.
- We show bisimulation-invariant predicate logic coincides with modal logic!

Syntax of modal logic

We fix a countable set \mathbb{P} of unary relational symbols.
The set ML of formulas of modal logic is the smallest set that satisfies the following:

- $p \in \mathrm{ML}$ for each $p \in \mathbb{P}$,
- if $\varphi \in \mathrm{ML}$ then $\neg \varphi \in \mathrm{ML}$,
- if $\varphi_{1}, \varphi_{2} \in \mathrm{ML}$ then $\left(\varphi_{1} \vee \varphi_{2}\right) \in \mathrm{ML}$,
- if $\varphi_{1}, \varphi_{2} \in \mathrm{ML}$ then $\left(\varphi_{1} \wedge \varphi_{2}\right) \in \mathrm{ML}$,
- if $\varphi \in \mathrm{ML}$ then $\diamond \varphi \in \mathrm{ML}$, and
- if $\varphi \in \mathrm{ML}$ then $\square \varphi \in \mathrm{ML}$.

Example.

$$
\left(\left(p_{1} \wedge p_{2}\right) \vee \neg \square\left(p_{3} \vee \diamond \diamond\left(p_{2} \wedge \neg p_{4}\right)\right)\right) \in \mathrm{ML}
$$

Semantics of modal logic

A Kripke structure is a logical structure \mathcal{A} over some signature $S=\mathrm{P} \cup\{E\}$, where $\mathrm{P} \subseteq \mathbb{P}$ is finite and where E is a binary relational symbol.

For each formula $\varphi \in \mathrm{ML}$ and each suitable Kripke structure \mathcal{A} and each $a \in U_{\mathcal{A}}$ we define $(\mathcal{A}, a) \models \varphi$ inductively as follows:

- $(\mathcal{A}, a) \models p$ if and only if $a \in p^{\mathcal{A}}$,
- $(\mathcal{A}, a) \models \neg \varphi$ if and only if $(\mathcal{A}, a) \not \models \varphi$,
- $(\mathcal{A}, a) \models \varphi_{1} \vee \varphi_{2}$ if and only if $(\mathcal{A}, a) \models \varphi_{1}$ or $(\mathcal{A}, a) \models \varphi_{2}$,
- $(\mathcal{A}, a) \models \varphi_{1} \wedge \varphi_{2}$ if and only if $(\mathcal{A}, a) \models \varphi_{1}$ and $(\mathcal{A}, a) \models \varphi_{2}$,
- $(\mathcal{A}, a) \models \diamond \varphi$ if and only if $(\mathcal{A}, b) \models \varphi$ for some $b \in U_{\mathcal{A}}$ with $(a, b) \in E^{\mathcal{A}}$, and
- $(\mathcal{A}, a) \models \square \varphi$ if and only if $(\mathcal{A}, b) \models \varphi$ for all $b \in U_{\mathcal{A}}$ with $(a, b) \in E^{\mathcal{A}}$.

The size and subformulas of a formula

The size $|\varphi|$ of a formula φ is defined as follows:

- $|p|=1$ if for each $p \in \mathbb{P}$,
- $|\neg \varphi|=|\varphi|+1$,
- $\left|\varphi_{1} \vee \varphi_{2}=\left|\varphi_{1} \wedge \varphi_{2}\right|=\left|\varphi_{1}\right|+\left|\varphi_{2}\right|+1\right.$, and
- $|\diamond \varphi|=|\square \varphi|=|\varphi|+1$.

The set of subformulas $\operatorname{subf}(\varphi)$ of a formula φ is defined as follows:

- $\operatorname{subf}(p)=\{p\}$ for each $p \in \mathbb{P}$,
- $\operatorname{subf}(\neg \varphi)=\{\neg \varphi\} \cup \operatorname{subf}(\varphi)$,
- $\operatorname{subf}\left(\varphi_{1} \circ \varphi_{2}\right)=\left\{\varphi_{1} \circ \varphi_{2}\right\} \cup \operatorname{subf}\left(\varphi_{1}\right) \cup \operatorname{subf}\left(\varphi_{2}\right)$ for each $\circ \in\{\vee, \wedge\}$, and
- $\operatorname{subf}(\circ \varphi)=\{\circ \varphi\} \cup \operatorname{subf}(\varphi)$ for each $\circ \in\{\diamond, \square\}$.

Note that $|\operatorname{subf}(\varphi)|=|\varphi|$.

Model checking of modal logic

Theorem. The following problem is decidable in polynomial time:
INPUT: An ML formula φ, a suitable Kripke structure \mathcal{A} and some $a \in U_{\mathcal{A}}$.
QUESTION: $(\mathcal{A}, a) \models \varphi$?
Proof (Idea only, details not difficult): For each subformula ψ of φ compute the set of $b \in U_{\mathcal{A}}$ such that $(\mathcal{A}, b) \models \psi$.

Satisfiability checking of modal logic

As expected we say that an ML formula φ is satisfiable if there exists a suitable Kripke structure \mathcal{A} and some $a \in U_{\mathcal{A}}$ such that $(\mathcal{A}, a) \models \varphi$.

Theorem. (Small model property of modal logic) Assume $\varphi \in \mathrm{ML}$ is satisfiable. Then there exists a suitable Kripke structure \mathcal{A} and some $a \in U_{\mathcal{A}}$ such that

- $(\mathcal{A}, a) \models \varphi$ and
- $\left|U_{\mathcal{A}}\right| \leq 2^{|\varphi|}$.

Corollary. Satisfiability of ML is decidable.

From modal logic to predicate logic

Lemma. For each formula φ there exists a formula $\bar{\varphi}(x)$ of predicate logic such that for each suitable Kripke structure \mathcal{A} and each $a \in U_{\mathcal{A}}$ we have

$$
(\mathcal{A}, a) \models \varphi \quad \Leftrightarrow \quad \mathcal{A}_{[x / a]} \models \bar{\varphi} .
$$

Proof.
We define the translation $\widetilde{\varphi}$ inductively as follows:

- $\widetilde{p}(x)=p(x)$ for each $p \in \mathbb{P}$,
- $\widetilde{\neg}(x)=\neg \widetilde{\varphi}(x)$,
- $\widetilde{\varphi_{1} \circ \varphi_{2}}(x)=\widetilde{\varphi_{1}}(x) \circ \widetilde{\varphi_{2}}(x)$ for each $\circ \in\{\vee, \wedge\}$,
- $\widetilde{\nabla \varphi}(x)=\exists y(E(x, y) \wedge \widetilde{\varphi}(y))$, and
- $\widetilde{\square}(x)=\forall y(E(x, y) \rightarrow \widetilde{\varphi}(y))$.

Note that $\widetilde{\varphi}$ requires at most two free variables.

Predicate logic vs. modal logic

Question. Is every property expressible in predicate logic over Kripke structures expressible in modal logic?

Answer. No! Take $\varphi(x)=\exists y E(x, y) \wedge E(y, x)$ expressing that there exists a cycle of length two (proof later).

We will concern ourselves with the following questions for the rest of this section:

- How to prove that the above property is not expressible in modal logic?
- How must we restrict the properties expressible in predicate logic to obtain the properties expressible in modal logic?

Bisimulation equivalence

Let \mathcal{A} and \mathcal{B} be two Kripke structures suitable for some finite signature S. A bisimulation between \mathcal{A} and \mathcal{B} is a relation $R \subseteq U_{\mathcal{A}} \times U_{\mathcal{B}}$ such that for each $(a, b) \in R$ the following holds:

- $a \in p^{\mathcal{A}}$ if and only if $b \in p^{\mathcal{B}}$ for each $p \in \mathbb{P}$,
- for each $\left(a, a^{\prime}\right) \in E^{\mathcal{A}}$ there exists some $\left(b, b^{\prime}\right) \in E^{\mathcal{B}}$ such that $\left(a^{\prime}, b^{\prime}\right) \in R$, and
- for each $\left(b, b^{\prime}\right) \in E^{\mathcal{B}}$ there exists some $\left(a, a^{\prime}\right) \in E^{\mathcal{A}}$ such that $\left(a^{\prime}, b^{\prime}\right) \in R$.
Given $a \in U_{\mathcal{A}}$ and $b \in U_{\mathcal{B}}$ we say (\mathcal{A}, a) and (\mathcal{B}, b) are bisimilar (we write $(\mathcal{A}, a) \sim(\mathcal{B}, b)$ for short) if $(a, b) \in R$ for some bisimulation R between \mathcal{A} and \mathcal{B}.

Bisimulation as a game

Consider the following bisimulation game from $\left\langle\left(\mathcal{A}_{1}, a_{1}\right),\left(\mathcal{A}_{2}, a_{2}\right)\right\rangle$ (on signature S) played between Attacker and Defender:

- Attacker chooses some $i \in\{1,2\}$ and some $\left(a_{i}, a_{i}^{\prime}\right) \in E^{\mathcal{A}_{i}}$.
- Defender answers with some $\left(a_{3-i}, a_{3-i}^{\prime}\right) \in E^{\mathcal{A}_{3-i}}$.
- The game continues in $\left\langle\left(\mathcal{A}_{1}, a_{1}^{\prime}\right),\left(\mathcal{A}_{2}, a_{2}^{\prime}\right)\right\rangle$.

Who wins a play?

- If along the play there is some pair $\left\langle\left(\mathcal{A}_{1}, x_{1}\right),\left(\mathcal{A}_{2}, x_{2}\right)\right\rangle$ and a $p \in S$ such that $x_{1} \in p^{\mathcal{A}_{1}} \Leftrightarrow x_{2} \in p^{\mathcal{A}_{2}}$, then Attacker wins!
- If the play ends such that Defender cannot answer Attacker's move (no successor), then Attacker wins.
- If the play ends $\left\langle\left(\mathcal{A}_{1}, x_{1}\right),\left(\mathcal{A}_{2}, x_{2}\right)\right\rangle$, where x_{1}, x_{2} are both dead ends, then Defender wins.
- Defender wins each infinite play.

Finite approximants

For each $\ell \geq 0$ we define the finite approximant \sim_{ℓ} between \mathcal{A} and \mathcal{B} (over signature S) as follows:

$$
\begin{array}{r}
\sim_{0}=\left\{(a, b) \in U_{\mathcal{A}} \times U_{\mathcal{B}} \mid \forall p \in S \cap \mathbb{P}: a \in p^{\mathcal{A}} \Leftrightarrow b \in p^{\mathcal{B}}\right\}, \\
\sim_{\ell+1}=\left\{a \sim_{\ell} b \mid \forall\left(a, a^{\prime}\right) \in E^{\mathcal{A}} \exists\left(b, b^{\prime}\right) \in E^{\mathcal{B}}: a^{\prime} \sim_{\ell} b^{\prime} \wedge\right. \\
\left.\forall\left(b, b^{\prime}\right) \in E^{\mathcal{B}} \exists\left(a, a^{\prime}\right) \in E^{\mathcal{A}}: a^{\prime} \sim_{\ell} b^{\prime}\right\}
\end{array}
$$

One easily sees that \sim_{ℓ} is an equivalence relation for each $\ell \in \mathbb{N}$.
Moreover $\sim \subseteq \sim_{\ell}$ for each $\ell \in \mathbb{N}$.

Bisimulation as a game

Theorem. Defender has a winning strategy from $\langle(\mathcal{A}, a),(\mathcal{B}, b)\rangle$ if and only if $(\mathcal{A}, a) \sim(\mathcal{B}, b)$.

Theorem. Defender has a winning strategy from $\langle(\mathcal{A}, a),(\mathcal{B}, b)\rangle$ in the ℓ round game if and only if $(\mathcal{A}, a) \sim_{\ell}(\mathcal{B}, b)$.

Fact. Bisimulation is insensitive to disjoint sums: We have $(\mathcal{A}, a) \sim(\mathcal{B}, b)$ if and only if $(\mathcal{A}+\mathcal{C}, a) \sim(\mathcal{B}, b)$, where $\mathcal{A}+\mathcal{C}$ denotes the disjoint sum of \mathcal{A} and \mathcal{C}.

\sim_{ℓ} and ML_{ℓ}

For each $\varphi \in \mathrm{ML}$, let us define the modal depth $\operatorname{md}(\varphi)$ as follows:

- $\operatorname{md}(p)=0$ for each $p \in \mathbb{P}$,
- $\operatorname{md}(\neg \varphi)=\operatorname{md}(\varphi)$,
- $\operatorname{md}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{md}\left(\varphi_{1} \wedge \varphi_{2}\right)=\max \left\{\operatorname{md}\left(\varphi_{1}\right), \operatorname{md}\left(\varphi_{2}\right)\right\}$, and
- $\operatorname{md}(\diamond \varphi)=\operatorname{md}(\square \varphi)=\operatorname{md}(\varphi)+1$.

For each $\ell \geq 0$ define $\mathrm{ML}_{\ell}=\{\varphi \in \mathrm{ML} \mid \operatorname{md}(\varphi)=k\}$.
Lemma. Let $\ell \in \mathbb{N}$. Let \mathcal{A} and \mathcal{B} be Kripke structures over a finite signature S and let $a \in U_{\mathcal{A}}$ and $b \in U_{\mathcal{B}}$. Then we have:
(1) \sim_{ℓ} has finitely many equivalence classes.
(2) $(\mathcal{A}, a) \sim_{\ell}(\mathcal{B}, b)$ iff $(\mathcal{A}, a) \models \varphi \Leftrightarrow(\mathcal{B}, b) \models \varphi$ for all $\varphi \in \mathrm{ML}_{\ell}$.
(3) Each equivalence class of \sim_{ℓ} is definable by some $M L_{\ell}$ formula.

Trees

A Kripke structure \mathcal{A} is a tree (structure) if $\left(U_{\mathcal{A}}, E^{\mathcal{A}}\right)$ is a directed tree, i.e. \mathcal{A} is acyclic, the symmetric closure of $E^{\mathcal{A}}$ is connected and each node has at most one incoming edge.

A tree \mathcal{A} has depth ℓ if each path in \mathcal{A} has length at most ℓ.
For $\ell \geq 0$ we say (\mathcal{A}, a) is ℓ-locally a tree structure if $\mathcal{A} \upharpoonright N_{\ell}(a)$ is a tree structure.

Lemma.
(1) $(\mathcal{A}, a) \sim_{\ell}(\mathcal{B}, b)$ iff $\left(\mathcal{A} \upharpoonright N_{\ell}(a), a\right) \sim_{\ell}\left(\mathcal{B} \upharpoonright N_{\ell}(b), b\right)$.
(2) If \mathcal{A} and \mathcal{B} are trees of depth ℓ, then

$$
(\mathcal{A}, a) \sim_{\ell}(\mathcal{B}, b) \text { iff }(\mathcal{A}, a) \sim(\mathcal{B}, b)
$$

Unravellings

The unravelling of \mathcal{A} at some $a \in U_{\mathcal{A}}$ is the tree \mathcal{A}_{a}^{*}, where

- $U_{\mathcal{A}_{a}^{*}}=\{\pi \mid \pi$ is a finite path in \mathcal{A} starting at $a\}$.
- $E^{\mathcal{A}_{a}^{*}}=\left\{\left(\pi, \pi^{\prime}\right) \in\left(U_{\mathcal{A}_{a}^{*}}\right)^{2} \mid \exists(u, v) \in E^{\mathcal{A}}: \pi^{\prime}=\pi(x, y)\right\}$.

Lemma. Let \mathcal{A} be a Kripke structure and let $a \in U_{\mathcal{A}}$. Then we have

- $\left(\mathcal{A}_{a}^{*}, a\right) \sim(\mathcal{A}, a)$.
- $\left(\mathcal{A}_{a}^{*} \upharpoonright N_{\ell}(a), a\right) \sim_{\ell}(\mathcal{A}, a)$.

Bisimulation invariance and locality

A predicate logic formula $F(x)$ over a Kripke signature is bisimulation invariant if the following holds for all suitable $(\mathcal{A}, a),(\mathcal{B}, b)$:

$$
(\mathcal{A}, a) \sim(\mathcal{B}, b) \Longrightarrow\left(\mathcal{A}_{[x / a]} \models F \Leftrightarrow\left(\mathcal{B}_{[x / b]} \models F\right)\right.
$$

A predicate logic formula $F(x)$ over a Kripke signature is ℓ-local if for all suitable (\mathcal{A}, a) we have

$$
\mathcal{A}_{[x / a]} \models F \Longleftrightarrow \mathcal{A} \upharpoonright N_{\ell}(a)_{[x / a]} \models F
$$

The Characterization Theorem

Theorem (van Benthem/Rosen, proof by Otto). The following are equivalent for any predicate logic formula $F(x)$ over a Kripke signature with $\operatorname{qr}(F)=q$:

- $F(x)$ is bisimulation-invariant.
- $F(x)$ is logically equivalent to some ML_{ℓ} formula, where $\ell=2^{q}-1$.
The same holds when restricted to the class of finite Kripke structures.

Proof Outline of Characterization Theorem

We prove the Characterization Theorem in three steps:
(1) Any bisimulation invariant $F(x)$ of predicate logic is ℓ-local for $\ell=2^{q}-1$, where $q=\operatorname{qr}(F)$.
(2) Any bisimulation invariant $F(x)$ that is ℓ-local is even invariant under ℓ-bisimulation equivalence \sim_{ℓ}.
(3) Any property invariant under ℓ-bisimulation equivalence is definable in ML_{ℓ}.

