
Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are a class of graphs that can be

used as data structure for compactly representing boolean functions.

BDDs were introduced by R. Bryant in 1986.

BDDs are used to solve equivalence problems between formulas of

propositional logic.

Very important in the areas of hardware design and hardware

optimization.

1

Graphs

Recall some basic graph-theoretical concepts:

directed graph node edge

predecessor successor path cycle

acyclic graph tree forest

2

Boolean Functions

A boolean function of arity n ≥ 1 is a function {0, 1}n → {0, 1}.

Examples:

or(x1, x2) =

{

1 if x1 = 1 or x2 = 1

0 else

3

if then else(x1, x2, x3) =

{

x2 if x1 = 1

x3 if x1 = 0

E.g.: if then else(1, 0, 1) = 0, if then else(0, 0, 1) = 1

alternate(x1, x2, x3, x4) =

{

1 if xi+1 = 1− xi for all i = 1, 2, 3

0 otherwise

E.g.: alternate(1, 0, 1, 0) = 1 , alternate(0, 0, 0, 1) = 0.

4

majorityn(x1, . . . , xn) =

1 if the majority of

x1, . . . , xn has value 1

0 otherwise

E.g.: majority4(1, 1, 0, 0) = 0, majority3(1, 0, 1) = 1

parityn(x1, . . . , xn) =

1 if the number of inputs x1, . . . , xn

equal to 1 is odd

0 otherwise

E.g.: parity3(1, 0, 1) = 0, parity2(1, 0) = 1

5

Formulas and boolean functions

Let F be a formula, and let n be a number such that all atomic

formulas occurring in F belong to {A1, . . . , An}.

Example: F = A1 ∧ A2, n = 2, but also n = 3 okay!

We define the boolean function fn
F : {0, 1}

n → {0, 1}:

fn
F (x1, . . . , xn) = truth value of F under the assignment

that sets A1, . . . , An to x1, . . . , xn

6

Example: For F = A1 ∧ A2 :

f 2
F (0, 1) = value of 0 ∧ 1 = 0

f 3
F (0, 1, 1) = value of 0 ∧ 1 = 0

Remark: If all of {A1, . . . , An} occur in F , then fn
F is essentially the

truth table of F .

Convention: We have f 3
F (x1, x2, x3) = x1 ∨ (x2 ∧ ¬x1)

in case F = A1 ∨ (A2 ∧ ¬A1).

7

Fact: Let F1 and F2 be two formulas, and let n be a number such

that all atomic formulas occurring in F1 or F2 belong to

{A1, . . . , An}. Then fn
F1

= fn
F2

iff F1 ≡ F2.

Example: F1 = A1, F2 = A1 ∧ (A2 ∨ ¬A2).

f 2
F1
(0, 0) = 0 = f 2

F2
(0, 0)

f 2
F1
(0, 1) = 0 = f 2

F2
(0, 1)

f 2
F1
(1, 0) = 1 = f 2

F2
(1, 0)

f 2
F1
(1, 1) = 1 = f 2

F2
(1, 1)

Convention: The constants 0 and 1 represent the only two boolean

functions of arity 0.

8

sum as binary decision tree

A boolean function can be represented by a decision tree

0 0 0 0 0 0 0 0

x1

x2

1 0

1 0 01

1 0 1 0 1 0 01

1 0 1 0 1 0 1 0 1 0010101

0 1 0 0 11 0 1

x2

x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

x3

9

Variable order

A decision tree can use a variable order different from the order used

in the function.

1 0

1 0 01

1 0 1 0 1 0 01

1 0 0 1 0 1 0 1 0010101

0

x1 x1

x2 x2 x2 x2x2 x2 x2 x2

0 1 0 0 0 0 0 0 1

1

0 0 1 10 0

x3

x4 x4 x4 x4

10

A variable order is a bijection

b: {1, . . . , n} → {x1, . . . , xn}

We say that b(1), b(2), b(3), . . . , b(n) are the first, second, third, . . . ,

n-th variable w.r.t. the order b.

We denote the bijection b(1) = xi1 , . . . , b(n) = xin by

xi1 < xi2 < . . . < xin .

11

Binary decision trees

A decision tree for the variable order xi1 < . . . < xin is a tree

satisfying the following conditions:

(1) All leaves are labelled by 0 or by 1.

(2) All other nodes are labelled by a variable and have exactly two

children, the 0-child and the 1-child. The edges leading to these

children are labelled by 0 resp. by 1.

(3) If the root is not a leaf, then it is labelled by xi1 .

(4) If a node is labelled by xin then its two children are leaves.

(5) If a node is labelled by xij and j < n, then its two children are

labelled by xij+1
.

12

Every path of a decision tree determines an assignment of the

variables xi1 , . . . xin and vice versa.

The boolean function fT represented by a decision tree T is defined

as follows:

fT (x1, . . . , xn) = label of the leaf reached by the path corresponding

to the assignment xi1 xi2 . . . xin

A binary decision forest ist a forest of decision trees with the same

variable order. A decision forest represents the set of functions

represented by its elements.

13

Binary Decision Diagrams (informally)

A BDD (multiBDD) is a “compact representation” of a binary

decision tree (decision forest).

A BDD (multiBDD) is obtained from a decision tree (forest) through

repeated application of two compression rules (see example in the

next slide):

• Rule 1: Sharing of identical subtrees.

• Rule 2: Elimination of nodes for which the 0-child and the

1-child coincide (redundant nodes).

The rules are applied until all subtrees are different and there are no

redundant nodes.

14

Example: sharing of subtrees

0 0 0 0 0 0 0 0

x1

x2

1 0

1 0 01

1 0 1 0 1 0 01

1 0 1 0 1 0 1 0 1 0010101

0 1 0 0 11 0 1

x2

x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

x3

All 0- und 1-leaves are merged.

15

Example: sharing of subtrees

x2

x3x3

x4x4 x4 x4 x4 x4 x4 x4

x3x3

x1

x2

1 0

1 0 01

1 0 1 0 1 0 01

01

All 0- und 1-leaves are merged.

16

Example: sharing of subtrees

x2

x3x3

x4 x4 x4

x3x3

x1

x2

1 0

1 0 01

01

Identical x4-nodes are merged.

17

Example: sharing of subtrees

x2

x3x3

x4 x4 x4

x3

x1

x2

01

Identical x3-nodes are merged.

18

Example: removing redundant nodes

x2

x3x3

x4 x4 x4

x3

x1

x2

01

Redundant x4-node is removed

19

Example: removing redundant nodes

x2

x3x3

x4 x4

x3

x1

x2

01

Redundant x4-node is removed

20

Formal Definition of BDDs

A BDD for a given variable order is an acyclic directed graph

satisfying the following properties:

(1) There is exactly one node without predecessors (the root)

(2) There is one or two nodes without successors, labelled by 0 or 1

(if there are two then they carry different labels).

(3) All other nodes are labelled by a variable and have exactly two

distinct children, the 0-child and the 1-child. The edges leading

to these children are labelled by 0 resp. by 1.

(4) A child of a node is labelled by 0, by 1, or by a variable larger

than the label of its parent w.r.t. the variable order.

(5) All descendant-closed subgraphs of the graph are

non-isomorphic.

21

MultiBDDs

A multiBDD is an acyclic graph satisfying (2)-(5) together a

distinguished nonempty subset of nodes called the roots.

Every node without any predecessor is a root, but other nodes may

also be roots.

A multiBDD represents a set of boolean functions, one for each root.

22

Remarks

Remark: A “closed subgraph” of a BDD is again a BDD.

Remark: The function truen(x1, . . . , xn) given by

truen(x1, . . . , xn) = 1 for every x1, . . . , xn ∈ {0, 1}n

is represented, for every n ≥ 1 and for every variable order, by the

BDD consisting of one single node labelled by 1.

Similarly for falsen(x1, . . . , xn)

23

Relevance of variable orders

The variable order can have large impact on the size of the BDD.

Example:

f(x1, . . . , x2n) = (x1 ↔ xn+1) ∧ (x2 ↔ xn+2) ∧ · · · ∧ (xn ↔ x2n)

Size grows exponentially in n for x1 < · · · < xn < xn+1 < · · · < x2n.

Size grows linearly in n for x1 < xn+1 < x2 < xn+2 < . . . < xn < x2n.

Problem in practice: finding a good order.

24

Canonicity of BDDs

We show that for a given boolean function and a given variable order

there is a unique BDD representing the function.

More generally (but simpler to prove!), we show that for every set of

boolean functions of the same arity and for every variable order there

is a unique multiBDD representing the set.

25

The functions f [0] und f [1]

Lemma I: Let f be a boolean function of arity n ≥ 1. There are

exactly two boolean functions f [0] und f [1] of arity (n− 1) satisfying

f(x1, . . . , xn) = (¬x1∧f [0](x2, . . . , xn))∨(x1∧f [1](x2, . . . , xn)) (∗)

Proof: The functions f [0] and f [1] defined by

f [0](x2, . . . , xn) = f(0, x2, . . . , xn) and

f [1](x2, . . . , xn) = f(1, x2, . . . , xn) satisfy (*).

Let f0 and f1 be arbitrary functions satisfying (*). Then

f(x1, . . . , xn) = (¬x1 ∧ f0(x2, . . . , xn)) ∨ (x1 ∧ f1(x2, . . . , xn))

By the properties of ∨ and ∧ we have

f(0, x2, . . . , xn) = f0(x2, . . . , xn) and together with

f(0, x2, . . . , xn) = f [0](x2, . . . , xn) we get f0 = f [0].

The proof that f1 = f [1] holds is analogous.

26

Let f : {0, 1}n → {0, 1} be a boolean function, let B be a BDD with

variable order x1 < x2 < . . . < xn, and let v be the root of B. Define

the nodes v[0] and v[1] as follows:

(1) If the root v is labelled by x1, then v[0] and v[1] are the 0-child

and the 1-child of v.

(2) Otherwise, v[0] = v = v[1].

Lemma II: B represents the function f iff v[0] and v[1] represent the

functions f [0] and f [1], respectively.

Proof: Easy.

27

Theorem: Let F be a nonempty set of boolean functions of arity n

and let xi1 < . . . < xin be a variable order. There is exactly one

multiBDD that follows this order and represents F .

Proof: We consider the order x1 < x2 < . . . < xn, for other orders

the proof is similar. Proof by induction on the arity n.

Basis: n = 0. There are exactly two boolean functions with n = 0,

namely the constants 0 and 1, and two BDDs K0,K1 consisting of

one single node labelled by 0 or by 1. The set {0} is represented by

K0, the set {1} by K1, and the set {0, 1} by the multiBDD

consisting of K0 and K1.

28

Step: n > 0. Let F = {f1, . . . , fk}.

Define F ′ = {f1[0], f1[1], . . . , fk[0], fk[1]}, where fi[0] and fi[1] are

as in Lemma I.

By induction hypothesis there is exactly one multiBDD B′ with roots

v10, v11, . . . , vk0, vk1 representing F ′. I.e., for every function fi[j] the

root vij represents fi[j].

29

Let B be the multiBDD with roots v1, . . . vk obtained from B′ after

executing the following steps for i = 1, 2, . . . , k:

• If vi0 = vi1 then set vi := vi0.

(In this case vi0 represents fi.)

• If vi0 6= vi1 and B′ has a node v such with vi0 as 0-child and vi1
as 1-child then set vi := v.

• If vi0 6= vi1 and B′ contains no such node then add a new node

vi having vi0 as 0-child and vi1 as 1-child .

(So vi represents fi, see Lemma II.)

Clearly, B represents F . We now show that B is the only multiBDD

representing F .

30

Let B̃ be an arbitrary multiBDD with roots ṽ1, . . . ṽk representing F .

By Lemma II, B̃ contains nodes ṽ1[0], ṽ1[1], . . . , ṽk[0], ṽk[1]

representing the functions of F ′.

By induction hypothesis, the multiBDD containing these nodes and

all its descendants is the multiBDD B′. In particular, we have

vij = ṽi[j] for every i ∈ {1, . . . , k} and j ∈ {0, 1}.

Let vi and ṽi be the roots of B and B̃, representing fi. By Lemmas I

und II, vi0 and ṽi[0] represent fi[0], and vi1 and ṽi[1] represent fi[1].

Since vi[0] = ṽi[0] and vi[1] = ṽi[1] we get vi = ṽi.

So B and B̃ are equal.

31

Computing BDDs from Formulas

Goal: Given a formula F over the atomic formulas A1, . . . , An and a

variable order for {x1, . . . , xn}, compute a BDD representing

fF (x1, . . . , xn).

Naive procedure: Compute the decision tree of fF and reduce it using

the compression rules.

Problem: The decision tree is too large!

Better procedure (idea): Compute recursively the multiBDD

representing {fF [Ai/0], fF [Ai/1]} for a suitable Ai, and derive from it

the BDD for fF , where F [Ai/0] bzw. F [Ai/0] are the formulas

obtained by replacing every occurrence of Ai by 0 resp. by 1.

In the next slides we formalize this idea.

32

Let S = {F1, . . . , Fn} be a nonempty set of formulas.

We define a procedure multiBDD(S) that returns the roots of a

multiBDD representing the set {fF1
, . . . , fFn

}.

K0 denotes the BDD with only one node labelled by 0.

K1 denotes the BDD with only one node labelled by 1.

A proper formula is a formula that is neither logically equivalent to 0

nor to 1.

An atomic formula Ai is smaller than Aj if xi appears before xj in

the variable order.

33

The function multiBDD(S)

if S contains no proper formulas

then if all formulas of S are equivalent to 0

then return {K0}

else if all formulas in S are equivalent to 1

then return {K1}

else return {K0,K1}

else choose a proper formula F ∈ S.

Let Ai be the smallest atomic formula occurring in F .

Let B = multiBDD((S \ {F}) ∪ {F [Ai/0], F [Ai/1]}).

Let v0, v1 be the roots of B representing F [Ai/0], F [Ai/1].

if v0 = v1 then return B

else add a new node v with v0, v1 as 0- and 1-child

(if such a node does not exist yet);

return (B \ {v0, v1}) ∪ {v}

34

Equivalence problems

Given two formulas F1, F2, the following algorithm decides whether

F1 ≡ F2 holds:

• Choose a suitable variable order x1 < . . . < xn.

• Compute a multiBDD for {F1, F2}.

• Check whether the roots vF1
, vF2

are equal.

For digital circuits: the BDDs are not derived from formulas, but

directly from the circuits.

35

Operations on BDDs

Given:

• two formulas F,G over the atomic formulas A1, . . . , An,

• a variable order for {x1, . . . , xn},

• a multiBDD with two roots vF , vG representing the functions

fF (x1, . . . , xn) and fF (x1, . . . , xn), and

• a binary boolean operation (e.g. ∨,∧,→,↔)

Goal: compute a BDD for the function fF◦G(x1, . . . , xn).

With our convention we have fF◦G = fF ◦ fG

36

Idea

Lemma: (fF ◦ fG)[0] = fF [0] ◦ fG[0] and (fF ◦ fG)[1] = fF [1] ◦ fG[1].

Proof: Exercise.

Algorithm: (for the order x1 < x2 < . . . < xn, similar for others)

• Compute a multiBDD for {fF [0] ◦ fG[0], fF [1] ◦ fG[1]}.

(Recursively.)

• Use the Lemma to build a BDD for fF◦G(x1, . . . , xn).

37

The function Or(vF , vG)

if vF = K1 or vF = K1 then return K1

else if vF = vG = K0 then return K0

else let vF0, vG0 be the nodes for F [0], G[0] and

let vF1, vG1 be the nodes for F [1], G[1]

v0 := Or(vF0, vG0); v1 := Or(vF1, vG1)

if v0 = v1 then return v0
else add a new node v with v0, v1 as 0- and 1-child

(if such a node does not exist yet);

return v

38

	Binary Decision Diagrams
	Graphs
	Boolean Functions
	Formulas and boolean functions
	sum as binary decision tree
	Variable order
	Binary decision trees
	Binary Decision Diagrams (informally)
	Example: sharing of subtrees
	Example: sharing of subtrees
	Example: sharing of subtrees
	Example: sharing of subtrees
	Example: removing redundant nodes
	Example: removing redundant nodes
	Formal Definition of BDDs
	MultiBDDs
	Remarks
	Relevance of variable orders
	Canonicity of BDDs
	The functions $f[0]$ und $f[1]$
	Computing BDDs from Formulas
	The function $mbox {multiBDD}({cal S})$
	Equivalence problems
	Operations on BDDs
	Idea
	The function $mbox {Or}(v_F, v_G)$

