
Syntax of propositional logic

An atomic formula has the form Ai where i = 1, 2, 3, . . ..

Formulas are defined by the following inductive process:

1. All atomic formulas are formulas

2. For every formula F , ¬F is a formula.

3. For all formulas F und G, (F ∧G) and (F ∨G) are formulas.

For (F ∧G) we say F and G, conjunction of F and G

For (F ∨G) we say F or G, disjunction of F and G

For ¬F we say not F , negation of F
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Syntax tree of a formula

Every formula can be represented by a syntax tree.

Example: F = ¬((¬A4 ∨ A1) ∧ A3)

¬

¬

A4

∨ A3

∧

A1
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Subformulas

The subformulas of a formula are the formulas corresponding to the

subtrees of its syntax tree.
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Semantics of propositional logic (I)

The elements of the set {0, 1} are called truth values.

An assignment is a function A:D → {0, 1}, where D is any subset of

the atomic formulas.

In case D = {Ai | i ∈ X} for some finite set X ⊂ N we sometimes

also write {(Ai,A(Ai)) | i ∈ X} to denote A.

We extend A to a function Â:E → {0, 1}, where E ⊇ D is the set of

formulas that can be built up using only the atomic formulas from D.
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Semantics of propositional logic (II)

Â(A) = A(A) if A ∈ D is an atomic formula

Â((F ∧G)) =

{

1 if Â(F ) = 1 and Â(G) = 1

0 otherwise

Â((F ∨G)) =

{

1 if Â(F ) = 1 or Â(G) = 1

0 otherwise

Â(¬F ) =

{

1 if Â(F ) = 0

0 otherwise

We write A instead of Â.
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Truth tables (I)

We can compute Â with the help of truth tables.

Observe: Â(F ) depends only on the definition of A on the atomic

formulas that occur in F .

Tables for the operators ∨, ∧, ¬:

A B A ∨ B

0 0 0 0 0

0 1 0 1 1

1 0 1 1 0

1 1 1 1 1

A B A ∧ B

0 0 0 0 0

0 1 0 0 1

1 0 1 0 0

1 1 1 1 1

A ¬ A

0 1 0

1 0 1
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Abbreviations

A,B,C,

P,Q,R, or . . . for A1, A2, A3 . . .

(F1 → F2) for (¬F1 ∨ F2)

(F1 ↔ F2) for ((F1 ∧ F2) ∨ (¬F1 ∧ ¬F2))

(

n
∨

i=1

Fi) for (. . . ((F1 ∨ F2) ∨ F3) ∨ . . . ∨ Fn)

(
n
∧

i=1

Fi) for (. . . ((F1 ∧ F2) ∧ F3) ∧ . . . ∧ Fn)

⊤ or true or 1 for (A1 ∨ ¬A1)

⊥ or false or 0 for (A1 ∧ ¬A1)
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Truth tables (II)

Tables for the operators →, ↔:

A B A → B

0 0 0 1 0

0 1 0 1 1

1 0 1 0 0

1 1 1 1 1

Name: implication

Interpretation: If A holds, then

B holds.

A B A ↔ B

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 1 1 1

Name: equivalence

Interpretation: A holds if and

only if B holds.
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Beware!!!

A → B does not say, that A is a cause of B.

“Penguins swim → Horses neigh”

is true (in our world).

A → B does not say anything about the truth value of A.

“Ms. Merkel is a criminal → Ms. Merkel should go to prison”

is true (in our world).

A false statement implies anything.

“Penguins fly → Mr. Obama is a criminal”

is true (in our world).

9



Formalizing natural language (I)

A device consists of two parts A and B, and a red light. We know

that:

• A or B (or both) are broken.

• If A is broken, then B is broken.

• If B is broken and the red light is on, then A is not broken.

• The red light is on.

We use the atomic formulas: Ro (red light on), Ab (A is broken), Bb

(B is broken), and formalize this situation by means of the formula

((((Ab ∨ Bb) ∧ (Ab → Bb)) ∧ ((Bb ∧ Ro) → ¬Ab))) ∧ Ro)
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Formalizing natural language (II)

Full truth table:

((((Ab ∨ Bb) ∧ (Ab → Bb))) ∧

Ro Ab Bb ((Bb ∧ Ro) → ¬Ab)) ∧ Ro)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0
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Formalizing natural language (III)

Formalize the Sudoku problem:
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An atomic formula XY Z for each triple (X, Y, Z) ∈ {1, . . . , 9}3:

XY Z = the square at row Y and column Z contains the number X
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Example: The first row contains all digits from 1 to 9

9
∧

X=1

(

9
∨

Z=1

X1Z

)

The truth table has

2729 = 282401395870821749694910884220462786335135391185

157752468340193086269383036119849990587392099522

999697089786549828399657812329686587839094762655

308848694610643079609148271612057263207249270352

7723757359478834530365734912

rows.
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Models

Let F be a formula and let A be an assignment. A is suitable for F if

it is defined for every atomic formula Ai occurring in F .

Let A be suitable for F :

If A(F ) = 1 then we write A |=F

and say F holds under A

or A is a model of F

If A(F ) = 0 then we write A 6|=F

and say F does not hold under A

or A is not a model of F
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Validity and satisfiability

Validity: A formula F is valid (or a tautology if every suitable

assignment for F is a model of F . We write |= F if F is valid, and

6|= F otherwise.

Satisfiability: A formula F is satisfiable if it has at least one model,

otherwise F is unsatisfiable.

A (finite or infinite!) set of formulas S is satisfiable if there is an

assigment that is a model of every formula in S.

15



Exercise

Valid Satisfiable Unsatisfiable

A

A ∨B

A ∨ ¬A

A ∧ ¬A

A → ¬A

A → B

A → (B → A)

A → (A → B)

A ↔ ¬A
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Exercise

Which of the following statements are true?

Y/N C.ex.

If F is valid, then F is satisfiable

If F is satisfiable, then ¬F is satisfiable

If F is valid, then ¬F is satisfiable

If F is unsatisfiable, dann ¬F is valid
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Mirroring principle

¬FF
G¬G

valid
formulas

satisfiable, but
not valid
formulas

unsatis-
fiable
formulas
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Consequence

A formula G is a consequence or follows from the formulas

F1, . . . , Fk if every model A of F1, . . . , Fk that is suitable for G is

also a model of G

If G is a consequence of F1, . . . , Fk then we write F1, . . . , Fk |= G.
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Consequence: example

(Ab ∨ Bb), (Ab → Bb),

((Bb ∧ Ro) → ¬Ab),Ro |= ((Ro ∧ ¬Ab) ∧ Bb)
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Exercise

M F M |= F ?

A A ∨ B

A A ∧ B

A,B A ∨ B

A,B A ∧ B

A ∧ B A

A ∨ B A

A,A → B B
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Consequence, validity, satisfiability

The following assertions are equivalent:

1. F1, . . . , Fk |= G, e.g. , G is a consequence of F1, . . . , Fk.

2. ((
∧

k

i=1
Fi) → G) is valid.

3. ((
∧

k

i=1
Fi) ∧ ¬G) is unsatisfiable.
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Exercise

Let S be a set of formulas, and let F and G be formulas. Which of

the following assertions hold?

Y/N

If F satisfiable then S |= F .

If F valid then S |= F .

If F ∈ S then S |= F .

If S |= F then S ∪ {G} |= F .

S |= F and S |= ¬F cannot hold simultaneously.

If S |= G → F and S |= G then S |= F .
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