Syntax of propositional logic

An atomic formula has the form A_i where i = 1, 2, 3, ...Formulas are defined by the following inductive process:

- 1. All atomic formulas are formulas
- 2. For every formula F, $\neg F$ is a formula.
- 3. For all formulas F und G, $(F \land G)$ and $(F \lor G)$ are formulas.

For $(F \land G)$ we say F and G, conjunction of F and GFor $(F \lor G)$ we say F or G, disjunction of F and GFor $\neg F$ we say not F, negation of F

Syntax tree of a formula

Every formula can be represented by a syntax tree.

Example: $F = \neg((\neg A_4 \lor A_1) \land A_3)$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

Semantics of propositional logic (I)

The elements of the set $\{0,1\}$ are called truth values.

An assignment is a function $\mathcal{A}: D \to \{0, 1\}$, where D is any subset of the atomic formulas.

In case $D = \{A_i \mid i \in X\}$ for some finite set $X \subset \mathbb{N}$ we sometimes also write $\{(A_i, \mathcal{A}(A_i)) \mid i \in X\}$ to denote \mathcal{A} .

We extend \mathcal{A} to a function $\hat{\mathcal{A}}: E \to \{0, 1\}$, where $E \supseteq D$ is the set of formulas that can be built up using only the atomic formulas from D.

Semantics of propositional logic (II)

 $\hat{\mathcal{A}}(A) = \mathcal{A}(A) \quad \text{if } A \in D \text{ is an atomic formula}$ $\hat{\mathcal{A}}((F \wedge G)) = \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ and } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases}$ $\hat{\mathcal{A}}((F \vee G)) = \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases}$ $\hat{\mathcal{A}}(\neg F) = \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \\ 0 & \text{otherwise} \end{cases}$

We write \mathcal{A} instead of $\hat{\mathcal{A}}$.

Truth tables (I)

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.

Observe: $\hat{\mathcal{A}}(F)$ depends only on the definition of \mathcal{A} on the atomic formulas that occur in F.

Tables for the operators \lor , \land , \neg :

A	B	A	\vee	B	A	В	A	\wedge	B	A			A
0	0	0	0	0	0	0	0	0	0	0		1	0
0	1	0	1	1	0	1	0	0	1	1		0	1
1	0	1	1	0	1	0	1	0	0		•		
1	1	1	1	1	1	1	1	1	1				

Abbreviations

$$\begin{array}{cccccccc} A,B,C,\\ P,Q,R, \, \mathrm{or} \, \dots & \mathrm{for} \quad A_1,A_2,A_3\dots\\ & & (F_1 \rightarrow F_2) & \mathrm{for} \quad (\neg F_1 \lor F_2) \\ & (F_1 \leftrightarrow F_2) & \mathrm{for} \quad ((F_1 \wedge F_2) \lor (\neg F_1 \wedge \neg F_2)) \\ & (\bigvee_{i=1}^n F_i) & \mathrm{for} \quad (\dots ((F_1 \lor F_2) \lor F_3) \lor \dots \lor F_n) \\ & & (\bigwedge_{i=1}^n F_i) & \mathrm{for} \quad (\dots ((F_1 \wedge F_2) \land F_3) \land \dots \land F_n) \\ & \top & \mathrm{or} \ \mathbf{true} \ \mathbf{or} \ 1 & \mathrm{for} \quad (A_1 \lor \neg A_1) \\ \bot & \mathrm{or} \ \mathbf{false} \ \mathbf{or} \ 0 & \mathrm{for} \quad (A_1 \land \neg A_1) \end{array}$$

Truth tables (II)

Tables for the operators \rightarrow , \leftrightarrow :

A	B	A	\rightarrow	B	A	В	A	\leftrightarrow	B
0	0	0	1	0	0	0	0	1	0
0	1	0	1	1	0	1	0	0	1
1	0	1	0	0	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1

Name: *implication*

Interpretation: If A holds, then B holds.

Name: equivalence

Interpretation: A holds if and only if B holds.

Beware!!!

 $A \rightarrow B$ does not say, that A is a cause of B.

```
"Penguins swim \rightarrow Horses neigh" is true (in our world).
```

 $A \rightarrow B$ does not say anything about the truth value of A.

"Ms. Merkel is a criminal \rightarrow Ms. Merkel should go to prison" is true (in our world).

A false statement implies anything.

"Penguins fly \rightarrow Mr. Obama is a criminal" is true (in our world).

9

Formalizing natural language (I)

A device consists of two parts A and B, and a red light. We know that:

- A or B (or both) are broken.
- If A is broken, then B is broken.
- If B is broken and the red light is on, then A is not broken.
- The red light is on.

We use the atomic formulas: Ro (red light on), Ab (A is broken), Bb (B is broken), and formalize this situation by means of the formula

 $((((Ab \lor Bb) \land (Ab \to Bb)) \land ((Bb \land Ro) \to \neg Ab))) \land Ro)$

Formalizing natural language (II)

Full truth table:

			$((((Ab \lor Bb) \land (Ab \to Bb))) \land$
Ro	Ab	Bb	$((Bb \land \underline{Ro}) \to \neg Ab)) \land \underline{Ro})$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Formalizing natural language (III)

Formalize the Sudoku problem:

4				9				2
		1				5		
	9		3	4	5		1	
		8				2	5	
7		5		3		4	6	1
	4	6				9		8
	6		1	5	9		8	
		9				6		
5				7				4

An atomic formula X_{YZ} for each triple $(X, Y, Z) \in \{1, \dots, 9\}^3$: X_{YZ} = the square at row Y and column Z contains the number X Example: The first row contains all digits from 1 to 9

$$\bigwedge_{X=1}^{9} \left(\bigvee_{Z=1}^{9} X_{1Z}\right)$$

The truth table has

 $2^{729} = 282401395870821749694910884220462786335135391185$ 157752468340193086269383036119849990587392099522 999697089786549828399657812329686587839094762655 3088486946106430796091482716120572632072492703527723757359478834530365734912

rows.

Models

Let F be a formula and let \mathcal{A} be an assignment. \mathcal{A} is suitable for F if it is defined for every atomic formula A_i occurring in F.

Let \mathcal{A} be suitable for F:

Validity: A formula F is valid (or a tautology if *every* suitable assignment for F is a model of F. We write $\models F$ if F is valid, and $\not\models F$ otherwise.

Satisfiability: A formula F is satisfiable if it has at least one model, otherwise F is unsatisfiable.

A (finite or infinite!) set of formulas S is satisfiable if there is an assignment that is a model of every formula in S.

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \lor B$			
$A \lor \neg A$			
$A \wedge \neg A$			
$A \to \neg A$			
$A \to B$			
$A \to (B \to A)$			
$A \to (A \to B)$			
$A \leftrightarrow \neg A$			

Exercise

Which of the following statements are true?

				Y/N	C.ex.
lf	F is valid,	then	F is satisfiable		
lf	F is satisfiable,	then	$\neg F$ is satisfiable		
lf	F is valid,	then	$\neg F$ is satisfiable		
lf	F is unsatisfiable,	dann	$\neg F$ is valid		

Mirroring principle

Consequence

A formula G is a consequence or follows from the formulas F_1, \ldots, F_k if every model \mathcal{A} of F_1, \ldots, F_k that is suitable for G is also a model of G

If G is a consequence of F_1, \ldots, F_k then we write $F_1, \ldots, F_k \models G$.

Consequence: example

 $(Ab \lor Bb), (Ab \to Bb),$ $((Bb \land Ro) \to \neg Ab), Ro \models ((Ro \land \neg Ab) \land Bb)$

Exercise

M	F	$M \models F$?
A	$A \lor B$	
A	$A \wedge B$	
A, B	$A \lor B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \lor B$	A	
$A, A \to B$	В	

Consequence, validity, satisfiability

The following assertions are equivalent:

1.
$$F_1, \ldots, F_k \models G$$
, e.g., G is a consequence of F_1, \ldots, F_k .

2.
$$((\bigwedge_{i=1}^k F_i) \to G)$$
 is valid.

3.
$$((\bigwedge_{i=1}^k F_i) \land \neg G)$$
 is unsatisfiable.

Exercise

Let S be a set of formulas, and let F and G be formulas. Which of the following assertions hold?

	Y/N
If F satisfiable then $S \models F$.	
If F valid then $S \models F$.	
If $F \in S$ then $S \models F$.	
If $S \models F$ then $S \cup \{G\} \models F$.	
$S \models F$ and $S \models \neg F$ cannot hold simultaneously.	
If $S \models G \rightarrow F$ and $S \models G$ then $S \models F$.	