Technische Universität München
I7
Stefan Göller
ST 2014

Logic

Exam July 11, 2014
Time: 120 minutes
If not stated otherwise, all answers have to be justified.

1. Let the following propositional formula

$$
F=(A \vee \neg B \vee \neg D \vee \neg E) \wedge(\neg B \vee C) \wedge B \wedge(\neg C \vee D) \wedge(\neg D \vee E)
$$

be given.
a) Decide whether F is satisfiable by using the algorithm for Horn formulas discussed in the lecture.
b) How many models defined precisely on A, B, C, D, E does F have?
c) How many models defined precisely on A, B, C, D, E does $\neg F$ have?

Possible solution.

a) In the first round (before the loop) B is being marked. In round two C is being marked, in round three D is being marked, in round four E is being marked and in round five A is being marked. The marking algorithm outputs that F is satisfiable and computes the satisfying truth assignment \mathcal{A}, where $\mathcal{A}(A)=\mathcal{A}(B)=\mathcal{A}(C)=$ $\mathcal{A}(D)=\mathcal{A}(E)=1$.
b) We have shown in case the input formula is satisfiable that the marking algorithm computes a minimal model (with respect to set inclusion of the variables that are set to 1), hence \mathcal{A} is the only model of F that is defined on A, B, C, D, E.
c) We have five variables, hence $2^{5}=32$ different truth assignments defined on A, B, C, D, E. Since F only has one such model, $\neg F$ has $32-1=31$ such models.
2. Let the following propositional formula

$$
F=\neg(((A \rightarrow B) \wedge(B \rightarrow A)) \rightarrow(A \leftrightarrow B))
$$

be given.
a) Transform F into some equivalent formula G in conjunctive normal form by applying a sequence of equivalences introduced in the lecture (the name of these rules do not have to be specified).
b) Write G in clause form.
c) Give a derivation of \square from G (either as a sequence or as a tree).
d) Compute $\operatorname{Res}^{0}(G)$ and $\operatorname{Res}^{1}(G)$ and determine the set $\left\{i \in \mathbb{N} \mid \square \in \operatorname{Res}^{i}(G)\right\}$.
e) How many models defined precisely on A, B, C does $F \vee(A \rightarrow B)$ have?

Possible solution.

a) Here, we really went step by step. In case a solution took more than one steps at once we will not be too strict about this.

$$
\begin{aligned}
F & =\neg(((A \rightarrow B) \wedge(B \rightarrow A)) \rightarrow(A \leftrightarrow B)) \\
& \equiv \neg(((\neg A \vee B) \wedge(B \rightarrow A)) \rightarrow(A \leftrightarrow B)) \\
& \equiv \neg(((\neg A \vee B) \wedge(\neg B \vee A)) \rightarrow(A \leftrightarrow B)) \\
& \equiv \neg(((\neg A \vee B) \wedge(\neg B \vee A)) \rightarrow((A \wedge B) \vee(\neg A \wedge \neg B))) \\
& \equiv \neg(\neg((\neg A \vee B) \wedge(\neg B \vee A)) \vee((A \wedge B) \vee(\neg A \wedge \neg B))) \\
& \equiv \neg \neg((\neg A \vee B) \wedge(\neg B \vee A)) \wedge \neg((A \wedge B) \vee(\neg A \wedge \neg B)) \\
& \equiv(\neg A \vee B) \wedge(\neg B \vee A) \wedge \neg((A \wedge B) \vee(\neg A \wedge \neg B)) \\
& \equiv(\neg A \vee B) \wedge(\neg B \vee A) \wedge \neg(A \wedge B) \wedge \neg(\neg A \wedge \neg B) \\
& \equiv(\neg A \vee B) \wedge(\neg B \vee A) \wedge(\neg A \vee \neg B) \wedge \neg(\neg A \wedge \neg B) \\
& \equiv(\neg A \vee B) \wedge(\neg B \vee A) \wedge(\neg A \vee \neg B) \wedge(\neg \neg A \vee \neg \neg B) \\
& \equiv(\neg A \vee B) \wedge(\neg B \vee A) \wedge(\neg A \vee \neg B) \wedge(\neg \neg A \vee B) \\
& \equiv(\neg A \vee B) \wedge(\neg B \vee A) \wedge(\neg A \vee \neg B) \wedge(A \vee B) \\
& =G
\end{aligned}
$$

b) G in clause form:

$$
G=\{\{\neg A, B\},\{\neg B, A\},\{\neg A, \neg B\},\{A, B\}\}
$$

c) Derivation of \square as a sequence:
(1) $\{\neg A, B\}$ is a clause of G
(2) $\{\neg A, \neg B\}$ is a clause of G
(3) $\{\neg A\}$ is a resolvent of (1) and (2)
(4) $\{\neg B, A\}$ is a clause of G
(5) $\{A, B\}$ is a clause of G
(6) $\{A\}$ is a resolvent of (4) and (5)
(7) \square is a resolvent of (3) and (6)
d) $\quad \operatorname{Res}^{0}(G)=G$

- $\operatorname{Res}^{1}(G)=\operatorname{Res}^{0}(G) \cup\{\{A, \neg A\},\{B, \neg B\},\{\neg A\},\{B\},\{\neg B\},\{A\}\}$
- Since $\{A\},\{\neg A\} \in \operatorname{Res}^{1}(G)$ we surely have $\square \in \operatorname{Res}^{2}(G)$ and hence $\square \in$ $\operatorname{Res}^{i}(G)$ for each $i \geq 2$ by monotonicity of Res. Hence

$$
\left\{i \in \mathbb{N} \mid \square \in \operatorname{Res}^{i}(G)\right\}=\{i \in \mathbb{N} \mid i \geq 2\}=\{2,3,4, \ldots\}
$$

e) Since $\square \in \operatorname{Res}^{*}(G)$ it follows F is unsatisfiable, thus $F \equiv 0$ and we get $F \vee(A \rightarrow$ $B) \equiv A \rightarrow B$. Over the variables A, B formula $A \vee B$ has three models, over A, B, C it has 6 models.
3. Let the following formula

$$
F=\forall x \forall y \exists z((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge \exists x(R(b, z) \wedge R(x, y)))
$$

of predicate logic be given.
a) Give a model \mathcal{A} of F such that $\left|U_{\mathcal{A}}\right|$ is minimal (without justification).
b) Skolemize the formula F into some formula G. In every step, state how the formula was transformed and whether semantic equivalence or only equi-satisfiability holds (the name of the rules do not have to be specified).
c) How many elements does the Herbrand universe of G have?
d) Give five elements of the Herbrand universe of G.

Possible solution.

a) The suitable structure \mathcal{A} with $U_{\mathcal{A}}=\{1\}, R^{\mathcal{A}}=\{(1,1)\}, b^{\mathcal{A}}=1$ and $f^{\mathcal{A}}(1)=1$ is obviously a model of F.
b)

$$
\begin{aligned}
F & =\forall x \forall y \exists z((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge \exists x(R(b, z) \wedge R(x, y))) \\
& \equiv \forall x \forall y \exists z((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge \exists w(R(b, z) \wedge R(w, y))) \\
& \equiv \forall x \forall y \exists z \exists w((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge R(b, z) \wedge R(w, y)) \\
& \equiv_{s} \quad \forall x \forall y \exists w((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge R(b, g(x, y)) \wedge R(w, y)) \\
& \equiv_{s} \quad \forall x \forall y((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge R(b, g(x, y)) \wedge R(h(x, y), y))
\end{aligned}
$$

c) The Herbrand universe is infinite since we have at least one functional symbol of arity at least one.
d) The Herbrand universe contains all terms over b, f, g and h, among them for instance $b, f(b), g(b, b), f(f(g(b, b))), g(f(b), b)$.
4. Let the signature $S=\{R, f\}$ be given, where R is a binary relational symbol (sometimes it helps reading R as an edge relation of a directed graph) and where f is a unary functional symbol.
a) Give a formula F over S with equality such that for each suitable structure \mathcal{A} it holds that $\mathcal{A} \models F$ if and only if R is an equivalence relation with precisely two equivalence classes (no justification necessary).
b) Prove that $\exists x \forall y R(x, y) \models \forall x \exists y R(y, x)$.
c) Give a satisfiable formula F over S without equality that has only infinite models (only the formula is required).
d) Give a satisfiable formula F over S with equality that has precisely four models (that are defined on S and up to isomorphism). Draw the four models (no further explanation required).

Possible solution.

a)

$$
\begin{gathered}
F=\forall x \forall y \forall z((R(x, x) \wedge(R(x, y) \rightarrow R(y, x)) \wedge(R(x, y) \wedge R(y, z) \rightarrow R(x, z))) \wedge \\
\forall x \forall y \forall z(R(x, y) \vee R(x, z) \vee R(y, z)) \wedge \exists x \exists y \neg R(x, y)
\end{gathered}
$$

b) We have to show that suitable model \mathcal{A} of $\exists x \forall y R(x, y)$ is also a model of $\forall x \exists y R(y, x)$. Assume $\mathcal{A} \models \exists x \forall R(x, y)$. Hence there exists some $a \in U_{\mathcal{A}}$ such that $(a, b) \in E^{\mathcal{A}}$ for each $b \in U_{\mathcal{A}}$. Let $c \in U_{\mathcal{A}}$ be arbitary, then we know that in particular $(a, c) \in R^{\mathcal{A}}$. Hence for each $c \in U_{\mathcal{A}}$ we have $\mathcal{A}_{[x / c]} \models \exists y R(y, x)$. Thus, $\mathcal{A} \equiv \forall x \exists y R(y, x)$.
c)

$$
F=\forall x \forall y \forall z((R(x, y) \wedge R(y, z) \rightarrow R(x, z)) \wedge \neg R(x, x) \wedge R(x, f(x)))
$$

(expressing R is an irreflexive and transitive binary relation that contains f interpreted as a binary relation).
d)

$$
F=\forall x \forall y(\neg R(x, y) \wedge x=f(x)) \wedge \forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4} \forall x_{5} \bigvee_{i, j \in\{1,2,3,4,5\}, i \neq j} x_{i}=x_{j}
$$

expressing that R is always empty, f always has self-loops at each element and that there are at most 4 elements in the universe. Hence the structures $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}$ are precisely the models of F, where for each $i \geq 1$ we set $U_{\mathcal{A}_{i}}=\{1, \ldots, i\}, R^{\mathcal{A}_{i}}=\emptyset$ and $f^{\mathcal{A}_{i}}(j)=j$ for each $j \in U_{\mathcal{A}_{i}}$.
5. Confirm or refute the following statements. Always provide a short justification of your answer.
a) There is a formula F of predicate logic that has a model \mathcal{A} with $U_{\mathcal{A}}=\mathbb{R}$ (the real numbers).
b) For any two isomorphic structures \mathcal{A} and \mathcal{B} it holds that for each $k \geq 17$ Duplicator has a winning strategy in $\mathcal{G}_{k}(\mathcal{A}, \mathcal{B})$.
c) For each structure \mathcal{A} we have that if $U_{\mathcal{A}}$ is infinite, then $\operatorname{Th}(\mathcal{A})$ is not decidable.
d) For each propositional formulas F, G and H we have that $F \wedge G \models H$ if and only if $(F \rightarrow G) \rightarrow H$ is valid.
e) $\{A, B,(A \rightarrow \neg B)\} \models(A \rightarrow \neg B) \rightarrow B$.
f) For any two structures \mathcal{A} and \mathcal{B} over the same signature it holds that if $U_{\mathcal{A}} \subseteq U_{\mathcal{B}}$, then $\operatorname{Th}(\mathcal{A}) \subseteq \operatorname{Th}(\mathcal{B})$.
g) For each formula F with $\operatorname{qr}(F)=k$ there exists a formula G with $\operatorname{qr}(G)=k+1$ and $F \equiv G$.
h) The satisfiability problem for propositional formulas in disjunctive normal form can be solved in polynomial time.

Possible solution.

a) Yes, take any valid formula, for instance the formula $\forall x(x=x)$.
b) Yes, if $\mathcal{A} \simeq \mathcal{B}$, then \mathcal{A} cannot be distinghuished by any formula in predicate logic. By the Ehrenfeucht-Fraïssé theorem in particular for each $k \geq 0$ Duplicator has a winning strategy for $\mathcal{G}_{k}(\mathcal{A}, \mathcal{B})$, in particular for $k \geq 17$.
c) No, we have proven by quantifier elimination that linear arithmetic, i.e. $\operatorname{Th}(\mathbb{Q}, 0,1,+, c \cdot(c \in \mathbb{Q}),<)$ is decidable.
d) No, take $F=H=0$ and $G=1$, then surely $F \wedge G \models H$ but $(F \rightarrow G) \rightarrow H \equiv 0$ is surely not valid.
e) Yes, obviously $\{A, B,(A \rightarrow \neg B)\}$ is unsatisfiable, hence $\{A, B,(A \rightarrow \neg B)\} \models F$ for each formula F.
f) No, if \mathcal{A} 's universe is a singleton then $F=\exists x \forall y(x=y) \in T h(\mathcal{A})$ but if \mathcal{B} 's universe has at least two elements, then $F \notin T h(\mathcal{B})$.
g) Yes, choose $G=F \wedge \forall x_{1} \cdots \forall x_{k}\left(x_{1}=x_{1}\right)$.
h) Yes, because a formula $F=\bigvee_{i=1}^{\ell} F_{i}$ in disjunctive normal form is satisfiable if and only if at least one F_{i} is satisfiable and one such F_{i} is satisfiable if and only if it does not contain an atomic formula both negatively and positively. The latter is easily verifiable in polynomial time.
6. a) Let S be an arbitrary finite signature with relational symbols only. Prove that the property

$$
P=\left\{\mathcal{A}:\left|U_{\mathcal{A}}\right| \in \mathbb{N} \text { is a prime number }\right\}
$$

is not expressible in predicate logic over S by applying the methodology theorem. When showing the existence of a winning Duplicator strategy, only the winning strategy is required (and not any proof why it is winning).
b) Let us fix the signature $S=\{R\}$, where R is a binary relational symbol. Let the property

$$
P=\{\mathcal{A} \mid \mathcal{A} \text { has a directed } R \text {-cycle of length } 3\}
$$

be given.
(i) Give some formula F of predicate logic that expresses P with $\operatorname{qr}(F)=3$ (only the formula is required).
(ii) Give two suitable structures \mathcal{A} and \mathcal{B} (drawing them suffices and no further justification necessary) such that

- \mathcal{A} satisfies P and \mathcal{B} does not satisfy P.
- Duplicator has a winning strategy in $\mathcal{G}_{2}(\mathcal{A}, \mathcal{B})$.

Possible solution.

a) By the methodology theorem it suffices to construct for each $k \geq 0$ two structures \mathcal{A}_{k} and \mathcal{B}_{k} such that
(i) \mathcal{A}_{k} satisfies P and \mathcal{B}_{k} does not satisfy \mathcal{B}_{k}.
(ii) Duplicator has a winning strategy in $\mathcal{G}_{k}\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right)$.

We choose \mathcal{A}_{k} as $U_{\mathcal{A}_{k}}=\{1, \ldots, m\}$, where m is the smallest prime greater or equal to k and $R^{\mathcal{A}_{k}}=\emptyset$ for each $R \in S$. We choose \mathcal{B}_{k} as $U_{\mathcal{A}_{k}}=\{1, \ldots, 4 k\}$ and also $R^{\mathcal{B}_{k}}=\emptyset$ for each $R \in S$. After having played i rounds with the pebbles $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right)\right\}$ Duplicator's winning strategy for the $(i+1)^{\text {st }}$ round is as follows:

- If some element a with $a=a_{h}$ for some $h \in\{1, \ldots i\}$ is played, answer b_{h}.
- If some element b with $b=b_{h}$ for some $h \in\{1, \ldots i\}$ is played, answer a_{h}.
- If some element $a \in U_{\mathcal{A}} \backslash\left\{a_{1}, \ldots, a_{i}\right\}$ is played, answer with some $b \in U_{\mathcal{B}_{k}} \backslash$ $\left\{b_{1}, \ldots, b_{i}\right\}$.
- If some element $b \in U_{\mathcal{B}} \backslash\left\{b_{1}, \ldots, b_{i}\right\}$ is played, answer with some $a \in U_{\mathcal{A}_{k}} \backslash$ $\left\{a_{1}, \ldots, a_{i}\right\}$.
b) (i) $F=\exists x \exists y \exists z(R(x, y) \wedge R(y, z) \wedge R(z, x))$ expresses P.
(ii) Choose \mathcal{A} as $U_{\mathcal{A}}=\{1,2,3\}$ with $R^{\mathcal{A}}=\{(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$ and \mathcal{B} as $U_{\mathcal{B}}=\{a, b\}$ with $R^{\mathcal{B}}=\{(a, b),(b, a)\}$.

