Logic

Exam July 11, 2014
Time: 120 minutes
Total number of points: $\mathbf{6 0}$
If not stated otherwise, all answers have to be justified.

1. $(8=4+2+2)$

Let the following propositional formula

$$
F=(A \vee \neg B \vee \neg D \vee \neg E) \wedge(\neg B \vee C) \wedge B \wedge(\neg C \vee D) \wedge(\neg D \vee E)
$$

be given.
a) Decide whether F is satisfiable by using the algorithm for Horn formulas discussed in the lecture.
b) How many models defined precisely on A, B, C, D, E does F have?
c) How many models defined precisely on A, B, C, D, E does $\neg F$ have?
2. $(11=5+1+2+2+1)$

Let the following propositional formula

$$
F=\neg(((A \rightarrow B) \wedge(B \rightarrow A)) \rightarrow(A \leftrightarrow B))
$$

be given.
a) Transform F into some equivalent formula G in conjunctive normal form by applying a sequence of equivalences introduced in the lecture (the name of these rules do not have to be specified).
b) Write G in clause form.
c) Give a derivation of \square from G (either as a sequence or as a tree).
d) Compute $\operatorname{Res}^{0}(G)$ and $\operatorname{Res}^{1}(G)$ and determine the set $\left\{i \in \mathbb{N} \mid \square \in \operatorname{Res}^{i}(G)\right\}$.
e) How many models defined precisely on A, B, C does $F \vee(A \rightarrow B)$ have?
3. $(7=2+3+1+1)$

Let the following formula

$$
F=\forall x \forall y \exists z((\neg(x=y) \rightarrow \neg R(f(x), f(y))) \wedge \exists x(R(b, z) \wedge R(x, y)))
$$

of predicate logic be given.
a) Give a model \mathcal{A} of F such that $\left|U_{\mathcal{A}}\right|$ is minimal (without justification).
b) Skolemize the formula F into some formula G. In every step, state how the formula was transformed and whether semantic equivalence or only equi-satisfiability holds (the name of the rules do not have to be specified).
c) How many elements does the Herbrand universe of G have?
d) Give five elements of the Herbrand universe of G.

4. $(9=2+2+2+3)$

Let the signature $S=\{R, f\}$ be given, where R is a binary relational symbol (sometimes it helps reading R as an edge relation of a directed graph) and where f is a unary functional symbol.
a) Give a formula F over S with equality such that for each suitable structure \mathcal{A} it holds that $\mathcal{A} \vDash F$ if and only if R is an equivalence relation with precisely two equivalence classes (no justification necessary).
b) Prove that $\exists x \forall y R(x, y) \models \forall x \exists y R(y, x)$.
c) Give a satisfiable formula F over S without equality that has only infinite models (only the formula is required).
d) Give a satisfiable formula F over S with equality that has precisely four models (that are defined on S and up to isomorphism). Draw the four models (no further explanation required).
5. $(16=8 \times 2)$

Confirm or refute the following statements. Always provide a short justification of your answer.
a) There is a formula F of predicate logic that has a model \mathcal{A} with $U_{\mathcal{A}}=\mathbb{R}$ (the real numbers).
b) For any two isomorphic structures \mathcal{A} and \mathcal{B} it holds that for each $k \geq 17$ Duplicator has a winning strategy in $\mathcal{G}_{k}(\mathcal{A}, \mathcal{B})$.
c) For each structure \mathcal{A} we have that if $U_{\mathcal{A}}$ is infinite, then $\operatorname{Th}(\mathcal{A})$ is not decidable.
d) For each propositional formulas F, G and H we have that $F \wedge G \models H$ if and only if $(F \rightarrow G) \rightarrow H$ is valid.
e) $\{A, B,(A \rightarrow \neg B)\} \models(A \rightarrow \neg B) \rightarrow B$.
f) For any two structures \mathcal{A} and \mathcal{B} over the same signature it holds that if $U_{\mathcal{A}} \subseteq U_{\mathcal{B}}$, then $T h(\mathcal{A}) \subseteq T h(\mathcal{B})$.
g) For each formula F with $\operatorname{qr}(F)=k$ there exists a formula G with $\operatorname{qr}(G)=k+1$ and $F \equiv G$.
h) The satisfiability problem for propositional formulas in disjunctive normal form can be solved in polynomial time.
6. a) $(9=5+(1+3))$

Let S be an arbitrary finite signature with relational symbols only. Prove that the property

$$
\left\{\mathcal{A}:\left|U_{\mathcal{A}}\right| \in \mathbb{N} \text { is a prime number }\right\}
$$

is not expressible in predicate logic over S by applying the methodology theorem. When showing the existence of a winning Duplicator strategy, only the winning strategy is required (and not any proof why it is winning).
b) Let us fix the signature $S=\{R\}$, where R is a binary relational symbol. Let the property

$$
P=\{\mathcal{A} \mid \mathcal{A} \text { has a directed } R \text {-cycle of length } 3\}
$$

be given.
(i) Give some formula F of predicate logic that expresses P with $\operatorname{qr}(F)=3$ (only the formula is required).
(ii) Give two suitable structures \mathcal{A} and \mathcal{B} (drawing them suffices and no further justification necessary) such that

- \mathcal{A} satisfies P and \mathcal{B} does not satisfy P.
- Duplicator has a winning strategy in $\mathcal{G}_{2}(\mathcal{A}, \mathcal{B})$.

