Technische Universität München I7 Stefan Göller

ST 2014

Logic

Exercise Sheet 9

Discussion: July 10, 2014

- 1. Give a family of formulas $(F_k)_{k\geq 0}$ of predicate logic over the signature $S = \{E\}$, where E is a binary symbol such that the following holds for each $k \geq 0$:
 - $\operatorname{qr}(F_k) = k$,
 - $F_k = F_k(x, y)$, i.e. F_k has two free variables, and
 - for each suitable structure \mathcal{A} and each $a, b \in U_{\mathcal{A}}$ we have $\mathcal{A}_{[x/a,y/b]} \models F_k$ if and only if there is *E*-path from *a* to *b* of length *k*.

Construct a similar family $(F_k)_{k\geq 0}$ but where

- for each suitable structure \mathcal{A} and each $a, b \in U_{\mathcal{A}}$ we have $\mathcal{A}_{[x/a,y/b]} \models F_k$ if and only if there is *E*-path from *a* to *b* of length 2^k .
- 2. Prove the second part of the induction proof for showing connectivity is not expressible in predicate logic. More precisely, consider the case $a \notin N_{2^{k-(i+1)}}(a_h)$ for each $h \in \{1, \ldots, i\}$.
- **3.** Show that there is no formula in predicate logic expressing the transitive closure of a binary relation R.
- **4.** Show the following equivalence for each subset $X \subseteq \mathbb{N}$ and each signature S:
 - (1) Property $\{\mathcal{A} : |U_{\mathcal{A}}| \in X\}$ is expressible in predicate logic with equality over signature S.
 - (2) X or $\mathbb{N} \setminus X$ is finite.