Logic

Exercise Sheet 7
Discussion: June 12, 2014

1. Let the following two axioms be given:
(1) $F \rightarrow(G \rightarrow F)$
(4) $F \rightarrow(\neg F \rightarrow G)$

Which of the following deductions in the Hilbert calculus are correct if the two axioms from above are the only ones allowed:
a) i.) $\neg A \vdash A \rightarrow(\neg A \rightarrow B)$
ii.) $\neg A \vdash \neg A$
iii.) $\neg A \vdash \neg(\neg A \rightarrow B)$
b) i.) $\neg A, B \vdash B$
ii.) $\neg A, B \vdash \neg A$
iii.) $\neg A, B \vdash \neg A \rightarrow B$
c) i.) $A \vdash \neg \neg A \rightarrow(A \rightarrow \neg \neg A)$
ii.) $A \vdash \neg \neg A$
iii.) $A \vdash A \rightarrow \neg \neg A$
d) i.) $A \vdash A \rightarrow(B \rightarrow A)$
ii.) $A \vdash A$
iii.) $A \vdash B \rightarrow A$
2. Using the complete set of axioms as presented in the lecture, give a deduction of $\neg \neg A \vdash$ A and of $A \vdash B \rightarrow(A \rightarrow A)$.
3. Provide a quantifier elimination procedure for $\operatorname{Th}(\mathbb{N}, 0,1,+,<,=)$ also known as Presburger arithmetic.
4. Let S be a signature. The spectrum of a formula F that is suitable for S is the set of all $n \in \mathbb{N}$ such that F has a model with universe of size n.
Show the following for predicate logic with equality:
a) \emptyset and $\mathbb{N} \backslash\{0\}$ are the spectrum of some formula over the empty signature.
b) Every finite set is the spectrum of some sentence over the empty signature.
c) Every set $U \subseteq \mathbb{N} \backslash\{0\}$ such that $\mathbb{N} \backslash U$ is finite is the spectrum of a sentence over the empty signature.
d) There exists a sentence F over the signature $\{R\}$, where R is a binary relational symbol such that the spectrum of F is set of all positive even naturals.

