Technische Universität München I7 Stefan Göller

Logic

Exercise Sheet 7

Discussion: June 12, 2014

1. Let the following two axioms be given:

- (1) $F \to (G \to F)$
- (4) $F \to (\neg F \to G)$

Which of the following deductions in the Hilbert calculus are correct if the two axioms from above are the only ones allowed:

- a) i.) $\neg A \vdash A \rightarrow (\neg A \rightarrow B)$ ii.) $\neg A \vdash \neg A$ iii.) $\neg A \vdash \neg (\neg A \rightarrow B)$ b) i.) $\neg A, B \vdash B$ ii.) $\neg A, B \vdash \neg A$ iii.) $\neg A, B \vdash \neg A \rightarrow B$ c) i.) $A \vdash \neg \neg A \rightarrow (A \rightarrow \neg \neg A)$ ii.) $A \vdash A \rightarrow \neg \neg A$ d) i.) $A \vdash A \rightarrow (B \rightarrow A)$ ii.) $A \vdash A$
- **2.** Using the complete set of axioms as presented in the lecture, give a deduction of $\neg \neg A \vdash A$ and of $A \vdash B \rightarrow (A \rightarrow A)$.
- **3.** Provide a quantifier elimination procedure for $Th(\mathbb{N}, 0, 1, +, <, =)$ also known as Presburger arithmetic.
- **4.** Let S be a signature. The *spectrum* of a formula F that is suitable for S is the set of all $n \in \mathbb{N}$ such that F has a model with universe of size n.

Show the following for predicate logic with equality:

- a) \emptyset and $\mathbb{N} \setminus \{0\}$ are the spectrum of some formula over the empty signature.
- b) Every finite set is the spectrum of some sentence over the empty signature.
- c) Every set $U \subseteq \mathbb{N} \setminus \{0\}$ such that $\mathbb{N} \setminus U$ is finite is the spectrum of a sentence over the empty signature.
- d) There exists a sentence F over the signature $\{R\}$, where R is a binary relational symbol such that the spectrum of F is set of all positive even naturals.

ST 2014