Technische Universität München I7 Stefan Göller

ST 2014

Logic Exercise Sheet 1

Discussion: April 10, 2014

- 1. Assume F and G are two propositional formulas whose sets of occurring atomic formulas are disjoint. Prove the equivalence of the following two statements.
 - a) $F \models G$.
 - b) F is unsatisfiable or G is valid.
- 2. Prove the Substitution Theorem.
- **3.** Use the semantical equvialences given in the slides (together with the Substitution Theorem) to transform the following formula F (resp. G) stepwise into CNF (resp. DNF). For every step state the used equivalence.

$$F = ((A \leftrightarrow \neg A) \lor (\neg C \land B)) \qquad G = \neg (A \to \neg (\neg B \lor \neg C))$$

- **4.** Compute the truth table of $H = ((A \leftrightarrow B) \lor ((\neg C \land \neg B) \land A))$ and determine from it a semantically equivalent formula in CNF and DNF.
- 5. The size |F| of a propositional formula F is inductively defined as follows: $|A_i| = 1$ for each $i \in \mathbb{N}$, $|(F \wedge G)| = |(F \vee G)| = |F| + |G| + 1$ and $|\neg F| = |F| + 1$.

Specify a family of "small" propositional formulas

 $\{F_n \mid n \ge 1, n \text{ is a power of two}\}$

such that each formula F_n describes the parity function on n inputs, i.e. we have

- the atomic formulas of F_n are A_1, \ldots, A_n ,
- for each suitable assignment \mathcal{A} we have $\mathcal{A} \models F_n$ if and only if

$$|\{i \in \{1, \ldots, n\} \mid \mathcal{A}(A_i) = 1\}|$$

is odd, and

• $|F_n| \in O(n^2).$